Understanding Retinal Microcircuitry: Then to Now

Author(s):  
Frank S. Werblin ◽  
John E. Dowling

This chapter focuses on the history of understanding retinal microcircuitry. To understand the microcircuitry underlying the responses of all ganglion cell types that exist in vertebrate retinas will require much work. We have a fairly good notion of how ON and OFF center ganglion cells are established by excitatory and inhibitory inputs in the outer plexiform layer (OPL) and inner plexiform layer (IPL), as well as how direction selection (DS) properties are imparted to ON-OFF ganglion cells in the IPL; but we have only fragmentary information regarding the microcircuitry of the other ganglion cell types. We do know where to look—along the various strata in the IPL. With electron microscope methods to determine synaptic circuitry and methods to record responses of single neurons in a circuit available, the microcircuitry of the strata in the IPL can be elucidated.

2001 ◽  
Vol 18 (4) ◽  
pp. 559-570 ◽  
Author(s):  
B.E. REESE ◽  
M.A. RAVEN ◽  
K.A. GIANNOTTI ◽  
P.T. JOHNSON

The present study has examined the emergence of cholinergic stratification within the developing inner plexiform layer (IPL), and the effect of ablating the cholinergic amacrine cells on the formation of other stratifications within the IPL. The population of cholinergic amacrine cells in the ferret's retina was identified as early as the day of birth, but their processes did not form discrete strata until the end of the first postnatal week. As development proceeded over the next five postnatal weeks, so the positioning of the cholinergic strata shifted within the IPL toward the outer border, indicative of the greater ingrowth and elaboration of processes within the innermost parts of the IPL. To examine whether these cholinergic strata play an instructive role upon the development of other stratifications which form within the IPL, one-week-old ferrets were treated with l-glutamate in an attempt to ablate the population of cholinergic amacrine cells. Such treatment was shown to be successful, eliminating all of the cholinergic amacrine cells as well as the alpha retinal ganglion cells in the central retina. The remaining ganglion cell classes as well as a few other retinal cell types were partially reduced, while other cell types were not affected, and neither retinal histology nor areal growth was compromised in these ferrets. Despite this early loss of the cholinergic amacrine cells, which are eliminated within 24 h, other stratifications within the IPL formed normally, as they do following early elimination of the entire ganglion cell population. While these cholinergic amacrine cells are present well before other cell types have differentiated, apparently neither they, nor the ganglion cells, play a role in determining the depth of stratification for other retinal cell types.


2011 ◽  
Vol 28 (3) ◽  
pp. 205-220 ◽  
Author(s):  
MARTIN WILSON ◽  
NICK NACSA ◽  
NATHAN S. HART ◽  
CYNTHIA WELLER ◽  
DAVID I. VANEY

AbstractUsing both NADPH diaphorase and anti-nNOS antibodies, we have identified—from retinal flatmounts—neuronal types in the inner retina of the chicken that are likely to be nitrergic. The two methods gave similar results and yielded a total of 15 types of neurons, comprising 9 amacrine cells, 5 ganglion cells, and 1 centrifugal midbrain neuron. Six of these 15 cell types are ubiquitously distributed, comprising 3 amacrine cells, 2 displaced ganglion cells, and a presumed orthotopic ganglion cell. The remaining nine cell types are regionally restricted within the retina. As previously reported, efferent fibers of midbrain neurons and their postsynaptic partners, the unusual axon-bearing target amacrine cells, are entirely confined to the ventral retina. Also confined to the ventral retina, though with somewhat different distributions, are the “bullwhip” amacrine cells thought to be involved in eye growth, an orthotopic ganglion cell, and two types of large axon-bearing amacrine cells whose dendrites and axons lie in stratum 1 of the inner plexiform layer (IPL). Intracellular fills of these two cell types showed that only a minority of otherwise morphologically indistinguishable neurons are nitrergic. Two amacrine cells that branch throughout the IPL are confined to an equatorial band, and one small-field orthotopic ganglion cell that branches in the proximal IPL is entirely dorsal. These findings suggest that the retina uses different processing on different regions of the visual image, though the benefit of this is presently obscure.


1997 ◽  
Vol 14 (6) ◽  
pp. 1089-1096 ◽  
Author(s):  
Bao-Song Zhu ◽  
Ian L. Gibbins

AbstractThe entire population of ganglion cells in the retina of the toad Bufo marinus was labeled by retrograde transport of a lysine-fixable biotinylated dextran amine of 3000 molecular weight. Synaptic connections between bipolar, amacrine, and ganglion cells in the inner plexiform layer were quantitatively analyzed, with emphasis on synaptic inputs to labeled ganglion cell dendrites. Synapses onto ganglion cell dendrites comprised 47% of a total of 1234 identified synapses in the inner plexiform layer. Approximately half of the bipolar or amacrine cell synapses were directed onto ganglion cell dendrites, while the rest were made mainly onto amacrine cell dendrites. Most of the synaptic inputs to ganglion cell dendrites derived from amacrine cell dendrites (84%), with the rest from bipolar cell terminals. Synaptic inputs to ganglion cell dendrites were distributed relatively uniformly throughout all sublaminae of the inner plexiform layer. The present study provides unambiguous identification of ganglion cell dendrites including very fine processes, enabling a detailed analysis of the types and distribution of synaptic inputs from the bipolar and amacrine cell to the ganglion cells. The retrograde tracing technique used in the present study will prove to be a useful tool for identifying synaptic inputs to ganglion cell dendrites from neurochemically identified bipolar and amacrine cell types in the retina.


2002 ◽  
Vol 19 (5) ◽  
pp. 575-581 ◽  
Author(s):  
ALINO MARTINEZ-MARCOS ◽  
ENRIQUE LANUZA ◽  
FERNANDO MARTINEZ-GARCIA

Retinal ganglion cells projecting to the optic tectum and visual thalamus have been investigated in the lizard, Podarcis hispanica. Injections of biotinylated dextran-amine in the optic tectum reveal seven morphological cell varieties including one displaced ganglion cell type. Injections in the visual thalamus yield similar ganglion cell classes plus four giant ganglion cells, including two displaced ganglion cell types. The present study constitutes the first comparison of tectal versus thalamic ganglion cell types in reptiles. The situation found in lizards is similar to that reported in mammals and birds where some cell types projecting to the thalamus are larger than those projecting to the mesencephalic roof. The presence of giant retino-thalamic ganglion cells with specific dendritic arborizations in sublaminae A and B of the inner plexiform layer suggests that parts of the visual thalamus of lizards could be implicated in movement detection, a role that might be played by the ventral lateral geniculate nucleus, which is involved in our tracer injections.


2002 ◽  
Vol 19 (6) ◽  
pp. 767-779 ◽  
Author(s):  
WELLS I. MANGRUM ◽  
JOHN E. DOWLING ◽  
ETHAN D. COHEN

We examined the distribution and morphological types of ganglion cells in the retina of the zebrafish, a model vertebrate genetic organism. Using cresyl violet and methylene blue staining, a prominent central area was observed in the ventral temporal retina. The density of ganglion cell layer neurons averaged from ∼12,000/mm2 in the dorsal-nasal retina to a peak of ∼37,000/mm2 in the ventral-temporal retina. Individual zebrafish ganglion cells were labeled by backfilling with DiI through the optic nerve followed by reconstruction using confocal microscopy. The dendritic stratification and branching pattern of each labeled ganglion cell was examined in relation to the borders of the inner plexiform layer (IPL). We identified 11 different morphological types of ganglion cell. The most commonly labeled ganglion cells were two types termed Type III or IV, which displayed highly stratified dendritic arborizations in their respective ON-, OFF-sublaminae of the IPL. Their dendritic branching patterns were highly asymmetric with many thorn-like varicosities that profusely filled the area of arborization. In contrast, Type V cells formed a small simply branching dendritic field in the innermost portion of the ON-sublamina of the IPL. Two large ganglion cell types (Types I and II) with wide monostratified dendritic fields were found in both the ON- and OFF-sublamina of the IPL. Three different types of multistratified/bistratified ganglion cells were found (Types, IX, X, and XI.) whose dendrites occupied different regions of the IPL. The multistratified dendrites of IX cells occupied the whole width of the IPL, while the dendrites of Type XI cells formed vertical claw-like endings in only the ON-sublamina of the IPL. We conclude that zebrafish ganglion cells display a rich variety of types and branching patterns. This study establishes a series of baseline measurements of zebrafish ganglion cells to facilitate examination of genes playing a role in the specification and stratification of ganglion cell types.


1989 ◽  
Vol 3 (6) ◽  
pp. 551-561 ◽  
Author(s):  
Pál Tóth ◽  
Charles Straznicky

AbstractThe number, dendritic morphology, and retinal distribution of displaced ganglion cells were studied in two anuran species, Xenopus laevis and Bufo marinus. Horseradish peroxidase or cobaltic lysine complex was applied to the cut end of the optic nerve, and the size, shape, and retinal position of retrogradely filled ganglion cells displaced into the inner nuclear layer were determined in retinal wholemount and sectioned material. Approximately 1% of ganglion cells in Xenopus and 0.1% in Bufo were found to be displaced. In both species, many of the previously described orthotopic ganglion cell types (Straznicky & Straznicky, 1988; Straznicky et al., 1990) were present among displaced ganglion cells. In Xenopus more displaced ganglion cells were found in the retinal periphery than in the retinal center, and they formed 3 or 4 distinct bands around the optic nerve head. In Bufo the incidence of displaced ganglion cells was higher along the visual streak than in the dorsal and ventral peripheral retina. These results indicate that the distribution of displaced ganglion cells approximates the retinal distribution of orthotopic ganglion cells. One of the likely mechanisms to account for this developmental paradox may be that the formation of the inner plexiform layer, adjacent to the ciliary margin, acts as a mechanical barrier by preventing the entry of some of the late developing ganglion cells into the ganglion cell layer.


The structure of the human, but mainly of the rhesus monkey, retina as examined by Golgi-staining techniques is described and interpreted on evidence from both light and electron microscopy. One type of rod bipolar cell and two types of cone bipolar cell are recognized. The rod bipolar is exclusively connected to rods. The midget bipolar is postsynaptic to only one cone but each cone is also presynaptic to a diffuse cone (flat) bipolar. Such flat bipolar cells are in synaptic relationship with about seven cones. No other bipolar cell types have been found. The brush bipolar of Polyak is interpreted as probably a distorted rod bipolar, while Polyak’s centrifugal bipolar is a misinterpretation of the morphology of diffuse amacrine cells. When presumptive centrifugal bipolars were observed they appeared to be a developmental stage of amacrine cells. In the outer plexiform layer two types of horizontal cell have been defined. Each type of horizontal cell has a single axon and two kinds of horizontal cell axon terminals are recognized. In the inner plexiform layer there are two main classes of amacrine cells: the stratified amacrines and the diffuse amacrines. Each class of amacrine has a wide variety of shapes. Polyak’s midget ganglion cell is confirmed and his five other kinds of ganglion cell are classified into diffuse and stratified ganglion cells according to the level at which their dendrites branch within the inner plexiform layer. A fuller summary is given by the diagram and in the legend of figure 98, p. 174. A new type of midget bipolar is described in the Appendix (p. 177).


1992 ◽  
Vol 9 (3-4) ◽  
pp. 279-290 ◽  
Author(s):  
Dennis M. Dacey ◽  
Sarah Brace

AbstractIntracellular injections of Neurobiotin were used to determine whether the major ganglion cell classes of the macaque monkey retina, the magnocellular-projecting parasol, and the parvocellular-projecting midget cells showed evidence of cellular coupling similar to that recently described for cat retinal ganglion cells. Ganglion cells were labeled with the fluorescent dye acridine orange in an in vitro, isolated retina preparation and were selectively targeted for intracellular injection under direct microscopic control. The macaque midget cells, like the beta cells of the cat's retina, showed no evidence of tracer coupling when injected with Neurobiotin. By contrast, Neurobiotin-filled parasol cells, like cat alpha cells, showed a distinct pattern of tracer coupling to each other (homotypic coupling) and to amacrine cells (heterotypic coupling).In instances of homotypic coupling, the injected parasol cell was surrounded by a regular array of 3–6 neighboring parasol cells. The somata and proximal dendrites of these tracer-coupled cells were lightly labeled and appeared to costratify with the injected cell. Analysis of the nearest-neighbor distances for the parasol cell clusters showed that dendritic-field overlap remained constant as dendritic-field size increased from 100–400 μm in diameter.At least two amacrine cell types showed tracer coupling to parasol cells. One amacrine type had a small soma and thin, sparsely branching dendrites that extended for 1–2 mm in the inner plexiform layer. A second amacrine type had a relatively large soma, thick main dendrites, and distinct, axon-like processes that extended for at least 2–3 mm in the inner plexiform layer. The main dendrites of the large amacrine cells were closely apposed to the dendrites of parasol cells and may be the site of Neurobiotin transfer between the two cell types. We suggest that the tracer coupling between neighboring parasol cells takes place indirectly via the dendrites of the large amacrine cells and provides a mechanism, absent in midget cells, for increasing parasol cell receptive-field size and luminance contrast sensitivity.


1996 ◽  
Vol 13 (6) ◽  
pp. 1099-1107 ◽  
Author(s):  
Péter Buzás ◽  
Sára Jeges ◽  
Robert Gábriel

AbstractThe main route of information flow through the vertebrate retina is from the photoreceptors towards the ganglion cells whose axons form the optic nerve. Bipolar cells of the frog have been so far reported to contact mostly amacrine cells and the majority of input to ganglion cells comes from the amacrines. In this study, ganglion cells of frogs from two species (Bufo marinus, Xenopus laevis) were filled retrogradely with horseradish peroxidase. After visualization of the tracer, light-microscopic cross sections showed massive labeling of the somata in the ganglion cell layer as well as their dendrites in the inner plexiform layer. In cross sections, bipolar output and ganglion cell input synapses were counted in the electron microscope. Each synapse was assigned to one of the five equal sublayers (SLs) of the inner plexiform layer. In both species, bipolar cells were most often seen to form their characteristic synaptic dyads with two amacrine cells. In some cases, however, the dyads were directed to one amacrine and one ganglion cell dendrite. This type of synapse was unevenly distributed within the inner plexiform layer with the highest occurrence in SL2 both in Bufo and Xenopus. In addition, SL4 contained also a high number of this type of synapse in Xenopus. In both species, we found no or few bipolar to ganglion cell synapses in the marginal sublayers (SLs 1 and 5). In Xenopus, 22% of the bipolar cell output synapses went onto ganglion cells, whereas in Bufo this was only 10%. We conclude that direct bipolar to ganglion cell information transfer exists also in frogs although its occurrence is not as obvious and regular as in mammals. The characteristic distribution of these synapses, however, suggests that specific type of the bipolar and ganglion cells participate in this process. These contacts may play a role in the formation of simple ganglion cell receptive fields.


1998 ◽  
Vol 15 (2) ◽  
pp. 377-387 ◽  
Author(s):  
BETH B. PETERSON ◽  
DENNIS M. DACEY

Ganglion cells with intraretinal axon collaterals have been described in monkey (Usai et al., 1991), cat (Dacey, 1985), and turtle (Gardiner & Dacey, 1988) retina. Using intracellular injection of horseradish peroxidase and Neurobiotin in in vitro whole-mount preparations of human retina, we filled over 1000 ganglion cells, 19 of which had intraretinal axon collaterals and wide-field, spiny dendritic trees stratifying in the inner half of the inner plexiform layer. The axons were smooth and thin (∼2 μm) and gave off thin (<1 μm), bouton-studded terminal collaterals that extended vertically to terminate in the outer half of the inner plexiform layer. Terminal collaterals were typically 3–300 μm in length, though sometimes as long as 700 μm, and were present in clusters, or as single branched or unbranched varicose processes with round or somewhat flattened lobular terminal boutons 1–2 μm in diameter. Some cells had a single axon whereas other cells had a primary axon that gave rise to 2–4 axon branches. Axons were located either in the optic fiber layer or just beneath it in the ganglion cell layer, or near the border of the ganglion cell layer and the inner plexiform layer. This study shows that in the human retina, intraretinal axon collaterals are associated with a morphologically distinct ganglion cell type. The synaptic connections and functional role of these cells are not yet known. Since distinct ganglion cell types with intraretinal axon collaterals have also been found in monkey, cat, and turtle, this cell type may be common to all vertebrate retinas.


Sign in / Sign up

Export Citation Format

Share Document