Reducing Response Times (DRAFT)

Author(s):  
Boaz Ronen ◽  
Joseph S Pliskin ◽  
Shimeon Pass

This chapter introduces practical tools for reducing response times significantly. Using the approaches and techniques presented in the chapter can reduce response time several folds. This is a strategic and tactical goal for every organization to reduce response times. The significant contribution of Lean/just in time to management is manifested in focusing on short response and introducing the perception that work in process is a burden, not an asset. This chapter presents tools and techniques such as the small batch concept, group technology, tactical gating, the “traffic lights” system, Superzoufing, working with a complete kit, and the shortest processing time.

Author(s):  
Boaz Ronen ◽  
Joseph S Pliskin ◽  
Shimeon Pass

Uncertainty and variability are among the biggest enemies of healthcare systems. Variability that is not properly managed may turn noncritical resources into bottlenecks, leading to increased response times, decreased throughput, and deteriorating quality. The chapter presents tools and techniques to protect against variability (managing buffers, creating protective capacity, etc.) and to reduce variability (response times reduction, creating a group technology structure, working in small batches, etc.). The chapter also presents Litvak’s approach to managing variability.


1983 ◽  
Vol 20 (4) ◽  
pp. 910-915 ◽  
Author(s):  
B. K. Asare ◽  
F. G. Foster

The expected response time of a job that requires processing time t and meets n jobs on arrival in the M/G/1 processor-sharing system is derived.


1983 ◽  
Vol 20 (04) ◽  
pp. 910-915 ◽  
Author(s):  
B. K. Asare ◽  
F. G. Foster

The expected response time of a job that requires processing time t and meets n jobs on arrival in the M/G/1 processor-sharing system is derived.


2014 ◽  
Vol 35 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Adele Kuckartz Pergher ◽  
Roberto Carlos Lyra da Silva

Observational, descriptive, exploratory, case study with the objective of measuring the stimulus-response time of the team to alarms monitoring invasive blood pressure (IBP) and analyzing the implications of this time for the safety of the patient. From January to March 2013, 60 hours of structured observation were conducted with registration of the alarms activated by IBP monitors in an adult ICU at a military hospital in the city of Rio de Janeiro. 76 IBP alarms were recorded (1.26 alarms/hour), 21 of which (28%) were attended to and 55 (72%) considered as fatigued. The average response time to the alarms was 2 min. 45 sec. The deficit in human resource and physical layout were factors determining the delay in response to the alarms. The increase in response times to these alarms may compromise the safety of patients with hemodynamic instability, especially in situations such as shock and the use of vasoactive drugs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Nicoladis ◽  
Chris Westbury ◽  
Cassandra Foursha-Stevenson

Second language (L2) learners often show influence from their first language (L1) in all domains of language. This cross-linguistic influence could, in some cases, be mediated by semantics. The purpose of the present study was to test whether implicit English gender connotations affect L1 English speakers’ judgments of the L2 French gender of objects. We hypothesized that gender estimates derived from word embedding models that measure similarity of word contexts in English would affect accuracy and response time on grammatical gender (GG) decision in L2 French. L2 French learners were asked to identify the GG of French words estimated to be either congruent or incongruent with the implicit gender in English. The results showed that they were more accurate with words that were congruent with English gender connotations than words that were incongruent, suggesting that English gender connotations can influence grammatical judgments in French. Response times showed the same pattern. The results are consistent with semantics-mediated cross-linguistic influence.


2009 ◽  
Vol 3 (1) ◽  
pp. 243-275 ◽  
Author(s):  
S. C. B. Raper ◽  
R. J. Braithwaite

Abstract. Glacier volume response time is a measure of the time taken for a glacier to adjust its geometry to a climate change. It is currently believed that the volume response time is given approximately by the ratio of glacier thickness to ablation at the glacier terminus. We propose a new conceptual model of glacier hypsometry (area-altitude relation) and derive the volume response time where climatic and topographic parameters are separated. The former is expressed by mass balance gradients which we derive from glacier-climate modelling and the latter are quantified with data from the World Glacier Inventory. Aside from the well-known scaling relation between glacier volume and area, we establish a new scaling relation between glacier altitude range and area, and evaluate it for seven regions. The presence of this scaling parameter in our response time formula accounts for the mass balance elevation feedback and leads to longer response times than given by the simple ratio of glacier thickness to ablation. Volume response times range from decades to thousands of years for glaciers in maritime (wet-warm) and continental (dry-cold) climates, respectively. The combined effect of volume-area and altitude-area scaling relations is such that volume response time can increase with glacier area (Axel Heiberg Island and Svalbard), hardly change (Northern Scandinavia, Southern Norway and the Alps) or even get smaller (The Caucasus and New Zealand).


2021 ◽  
Vol 7 (4) ◽  
pp. 571-586
Author(s):  
Munevver Ilgun

<p style="text-align: justify;">Response times are one of the important sources that provide information about the performance of individuals during a test process. The main purpose of this study is to show that survival models can be used in educational data. Accordingly, data sets of items measuring literacy, numeracy and problem-solving skills of the countries participating in Round 3 of the Programme for the International Assessment of Adult Competencies were used. Accelerated failure time models have been analyzed for each country and domain.  As a result of the analysis of the models in which various covariates are included as independent variables, and response time for giving correct answers is included as a dependent variable, it was found the associations between the covariates and response time for giving correct answers were concluded to vary from one domain to another or from one country to another. The results obtained from the present study have provided the educational stakeholders and practitioners with valuable information.</p>


Author(s):  
Nabil Hasshim ◽  
Michelle Downes ◽  
Sarah Bate ◽  
Benjamin A. Parris

Abstract. Previous analyses of response time distributions have shown that the Stroop effect is observed in the mode (μ) and standard deviation (σ) of the normal part of the distribution, as well as its tail (τ). Specifically, interference related to semantic and response processes has been suggested to specifically affect the mode and tail, respectively. However, only one study in the literature has directly manipulated semantic interference, and none manipulating response interference. The present research aims to address this gap by manipulating both semantic and response interference in a manual response Stroop task, and examining how these components of Stroop interference affect the response time distribution. Ex-Gaussian analysis showed both semantic and response conflict to only affect τ. Analyzing the distribution by rank-ordered response times (Vincentizing) showed converging results as the magnitude of both semantic and response conflict increased with slower response times. Additionally, response conflict appeared earlier on the distribution compared to semantic conflict. These findings further highlight the difficulty in attributing specific psychological processes to different parameters (i.e., μ, σ, and τ). The effect of different response modalities on the makeup of Stroop interference is also discussed.


1988 ◽  
Vol 4 (03) ◽  
pp. 197-215
Author(s):  
Richard L. DeVries

The use of computers to improve the productivity of U.S. shipyards has never been as successful as hoped for by the designers. Many applications were simply the conversion of an existing process to a computerized process. The manufacturing database required for the successful application of computer-aided process planning (CAPP) to the shipyard environment requires a "back-to-basics" approach, one that can lead to control of the processes occurring in the fabrication and assembly shops of a shipyard. The manufacturing database will not provide management feedback designed for the financial segment of the shipyard (although it can be converted to be fully applicable): it provides "real-time" manufacturing data that the shop floor manager can utilize in his day-to-day decisions, not historical data on how his shop did last week or last month. The computer is only a tool to be used to organize the mountains of manufacturing data into useful information for today's shop manager on a "real time" basis. The use of group technology to collect similar products, the use of parameters to clearly identify work content, the use of real-time efficiency rates to project capacity and realistic schedules, and the use of bar codes to input "real time" data are all tools that are part of the process—tools for the shop floor manager of tomorrow.


Sign in / Sign up

Export Citation Format

Share Document