Genetics

Author(s):  
Jeremy D. Woods ◽  
Katrina M. Dipple ◽  
Derek A. Wong

Recognition and comanagement of genetic disorders is an increasingly important aspect of general pediatric care. Timely diagnosis and proper management of treatable genetic disorders often have profound implications for the survival and development of the affected individuals. This chapter provides general pediatricians with the knowledge base necessary to understand modern genetic testing, recognize the presentation of the more commonly encountered genetic diseases, and provide ability to coordinate and manage these children’s complex medical issues. The question-and-answer format provides active learning in a wide array of subjects, including the application of testing modalities (e.g., karyotyping, chromosomal microarray, and DNA sequencing), as well as inborn errors of metabolism, disorders of sex development, and more common mutations and deletions.

2021 ◽  
Vol 4 (2) ◽  
pp. 133-141
Author(s):  
Suma Elcy Varghese ◽  
Rana Hassan Mohammad El Otol ◽  
Fatma Sultan Al Olama ◽  
Salah Ahmad Mohamed Elbadawi

<b><i>Background:</i></b> Early detection of diseases in newborn may help in early intervention and treatment, which may either cure the disease or improve the outcome of the patient. Dubai’s Health Authority has a newborn screening program which includes screening for metabolic and genetic conditions, for hearing and vision, and for congenital heart disease. <b><i>Objectives:</i></b> The objectives of this study are to assess the outcome of the newborn genetic screening program, to correlate the association between the outcome of the program and demographic variables and to find out the percentage of the number of infants who were confirmed to have the genetic disease (by confirmatory tests) out of the total infants who had positive screening test results. <b><i>Methods:</i></b> During the period of the study from January 2018 to December 2018, a total of 7,027 newborns were tested in Dubai Health Authority facilities by the newborn genetic screening program (known as the “Step One Screening”). Blood samples were collected by heel prick on a collection paper. All samples were transported to PerkinElmer Genomics in the USA where the tests were done. The genetic disorders identified were correlated with different variables like gender and nationality. The data were entered in an excel sheet and analyzed by using SPSS software. All infants aged 0–3 months who have done newborn genetic screening at Dubai Health Authority facilities between January and December 2018 were included. <b><i>Results:</i></b> The incidence of screened disorders was 1:7,027 for congenital adrenal hyperplasia, 1:1,757 for congenital hypothyroidism, 1:1,757 for inborn errors of metabolism, 1:2,342 for biotinidase deficiency, 1:1,171 for hemoglobinopathies, 1:12 for hemoglobinopathy traits, and 1:10 for different genetic mutations of G6PD deficiency. <b><i>Conclusions:</i></b> There is a high incidence of different genetic diseases detected by newborn screening. These results justify unifying the program in the UAE and preventive programs like premarital screening and genetic counseling.


Author(s):  
S. E. Miller ◽  
G. B. Hartwig ◽  
R. A. Nielsen ◽  
A. P. Frost ◽  
A. D. Roses

Many genetic diseases can be demonstrated in skin cells cultured in vitro from patients with inborn errors of metabolism. Since myotonic muscular dystrophy (MMD) affects many organs other than muscle, it seems likely that this defect also might be expressed in fibroblasts. Detection of an alteration in cultured skin fibroblasts from patients would provide a valuable tool in the study of the disease as it would present a readily accessible and controllable system for examination. Furthermore, fibroblast expression would allow diagnosis of fetal and presumptomatic cases. An unusual staining pattern of MMD cultured skin fibroblasts as seen by light microscopy, namely, an increase in alcianophilia and metachromasia, has been reported; both these techniques suggest an altered glycosaminoglycan metabolism An altered growth pattern has also been described. One reference on cultured skin fibroblasts from a different dystrophy (Duchenne Muscular Dystrophy) reports increased cytoplasmic inclusions seen by electron microscopy. Also, ultrastructural alterations have been reported in muscle and thalamus biopsies from MMD patients, but no electron microscopical data is available on MMD cultured skin fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document