From heart-forming region to ballooning chambers

ESC CardioMed ◽  
2018 ◽  
pp. 39-44
Author(s):  
Maurice J. B. van den Hoff ◽  
Antoon F. M. Moorman

This chapter describes the formation of the adult four-chambered heart from the precardiac mesodermal cells. The precardiac mesoderm develops into a linear heart tube by the process of folding. The subsequent increase in size of the heart by the addition of precursor cells derived from the first and second heart fields is discussed. For the sake of clarity, the chapter describes the addition of precursor cells to the inflow and outflow, separately. Next, the formation of the ventricular chambers with respect to ballooning and differentiation into a compact and trabecular layer is discussed. Finally, the formation of the septa in the heart tube is described, creating the adult four-chambered heart.

Author(s):  
Maurice J. B. van den Hoff ◽  
Antoon F. M. Moorman

This chapter describes the formation of the adult four-chambered heart from the precardiac mesodermal cells. The precardiac mesoderm develops into a linear heart tube by the process of folding. The subsequent increase in size of the heart by the addition of precursor cells derived from the first and second heart fields is discussed. For the sake of clarity, the chapter describes the addition of precursor cells to the inflow and outflow, separately. Next, the formation of the ventricular chambers with respect to ballooning and differentiation into a compact and trabecular layer is discussed. Finally, the formation of the septa in the heart tube is described, creating the adult four-chambered heart.


Author(s):  
Victor D. Varner ◽  
Larry A. Taber

The heart is the first functioning organ to form during development. Similar to other organ primordia, the embryonic heart forms as a simple tube — in this case, a straight muscle-wrapped tube situated on the ventral side of the embryo. During gastrulation, the cardiac progenitors reside in the lateral plate mesoderm but maintain close contact with the underlying endoderm. In amniotes, these bilateral heart fields are initially organized as a pair of flat epithelia that move toward the embryonic midline and fuse above the anterior intestinal portal (AIP) to form the heart tube. This medial motion is typically attributed to active mesodermal migration over the underlying endoderm. In this view, the role of the endoderm is two-fold: to serve as a mechanically passive substrate for the crawling mesoderm and to secrete various growth factors necessary for cardiac specification and differentiation.


Development ◽  
1992 ◽  
Vol 115 (4) ◽  
pp. 1071-1078 ◽  
Author(s):  
C. Hoyle ◽  
N.A. Brown ◽  
L. Wolpert

The chick heart tube develops from the fusion of the right and left areas of precardiac mesoderm and in almost all cases loops to the embryo's right-hand side. We have investigated whether any intrinsic difference exists in the right and left areas of precardiac mesoderm, that influences the direction of looping of the heart tube. Chick embryos incubated to stages 4,5 and 6 were cultured by the New method. Areas of precardiac mesoderm were exchanged between donor and host embryos of the same stage and different stages to form control, double-right and double-left sided embryos. Overall, double-right sided embryos formed many more left-hand loops than double-left sided embryos. At stages 4 and 5 a small percentage of double-right embryos formed left-hand loops (13%) whereas at stage 6 almost 50% of hearts had left-hand loops. Control embryos formed right-hand loops in 97% of cases. The stability of right-hand heart looping by double-left sided embryos, may be related to the process of ‘conversion’, whereas the direction of looping by double-right sided embryos has become randomised. There is some indication that an intrinsic change occurred in the precardiac mesoderm between stages 5 and 6 that later influenced the direction of looping of the heart tube. The direction of body turning is suggested to be linked to the direction of heart looping.


1999 ◽  
Vol 145 (5) ◽  
pp. 1063-1076 ◽  
Author(s):  
F. Frémion ◽  
M. Astier ◽  
S. Zaffran ◽  
A. Guillèn ◽  
V. Homburger ◽  
...  

The gene encoding the α subunit of the Drosophila Go protein is expressed early in embryogenesis in the precursor cells of the heart tube, of the visceral muscles, and of the nervous system. This early expression coincides with the onset of the mesenchymal-epithelial transition to which are subjected the cardial cells and the precursor cells of the visceral musculature. This gene constitutes an appropriate marker to follow this transition. In addition, a detailed analysis of its expression suggests that the cardioblasts originate from two subpopulations of cells in each parasegment of the dorsal mesoderm that might depend on the wingless and hedgehog signaling pathways for both their determination and specification. In the nervous system, the expression of Goα shortly precedes the beginning of axonogenesis. Mutants produced in the Goα gene harbor abnormalities in the three tissues in which the gene is expressed. In particular, the heart does not form properly and interruptions in the heart epithelium are repeatedly observed, henceforth the brokenheart (bkh) name. Furthermore, in the bkh mutant embryos, the epithelial polarity of cardial cells was not acquired (or maintained) in various places of the cardiac tube. We predict that bkh might be involved in vesicular traffic of membrane proteins that is responsible for the acquisition of polarity.


Development ◽  
2001 ◽  
Vol 128 (16) ◽  
pp. 3179-3188 ◽  
Author(s):  
Karen L. Waldo ◽  
Donna H. Kumiski ◽  
Kathleen T. Wallis ◽  
Harriett A. Stadt ◽  
Mary. R. Hutson ◽  
...  

The primary heart tube is an endocardial tube, ensheathed by myocardial cells, that develops from bilateral primary heart fields located in the lateral plate mesoderm. Earlier mapping studies of the heart fields performed in whole embryo cultures indicate that all of the myocardium of the developed heart originates from the primary heart fields. In contrast, marking experiments in ovo suggest that the atrioventricular canal, atria and conotruncus are added secondarily to the straight heart tube during looping. The results we present resolve this issue by showing that the heart tube elongates during looping, concomitant with accretion of new myocardium. The atria are added progressively from the caudal primary heart fields bilaterally, while the myocardium of the conotruncus is elongated from a midline secondary heart field of splanchnic mesoderm beneath the floor of the foregut. Cells in the secondary heart field express Nkx2.5 and Gata-4, as do the cells of the primary heart fields. Induction of myocardium appears to be unnecessary at the inflow pole, while it occurs at the outflow pole of the heart. Accretion of myocardium at the junction of the inflow myocardium with dorsal mesocardium is completed at stage 12 and later (stage 18) from the secondary heart field just caudal to the outflow tract. Induction of myocardium appears to move in a caudal direction as the outflow tract translocates caudally relative to the pharyngeal arches. As the cells in the secondary heart field begin to move into the outflow or inflow myocardium,they express HNK-1 initially and then MF-20, a marker for myosin heavy chain. FGF-8 and BMP-2 are present in the ventral pharynx and secondary heart field/outflow myocardium, respectively, and appear to effect induction of the cells in a manner that mimics induction of the primary myocardium from the primary heart fields. Neither FGF-8 nor BMP-2 is present as inflow myocardium is added from the primary heart fields. The addition of a secondary myocardium to the primary heart tube provides a new framework for understanding several null mutations in mice that cause defective heart development.


2017 ◽  
Author(s):  
Kenzo Ivanovitch ◽  
Susana Temiño ◽  
Miguel Torres

ABSTRACTDuring vertebrate heart development two progenitor populations, first and second heart fields (FHF, SHF), sequentially contribute to longitudinal subdivisions of the heart tube (HT), with the FHF contributing the left ventricle and part of the atria, and the SHF the rest of the heart. Here we study the dynamics of cardiac differentiation and morphogenesis by tracking individual cells in live analysis of mouse embryos. We report that during an initial phase, FHF precursors differentiate rapidly to form a cardiac crescent, while limited morphogenesis takes place. In a second phase, no differentiation occurs while extensive morphogenesis, including splanchnic mesoderm sliding over the endoderm, results in HT formation. In a third phase, cardiac precursor differentiation resumes and contributes to SHF-derived regions and the dorsal closure of the HT. These results reveal tissue-level coordination between morphogenesis and differentiation during HT formation and provide a new framework to understand heart development.


PLoS ONE ◽  
2020 ◽  
Vol 15 (7) ◽  
pp. e0234069 ◽  
Author(s):  
Villavicencio Guzmán Laura ◽  
Salazar García Marcela ◽  
Jaime Cruz Ricardo ◽  
Lazzarini Roberto ◽  
Toledano-Toledano Filiberto ◽  
...  

2002 ◽  
Vol 5 (6) ◽  
pp. 516-543 ◽  
Author(s):  
Margaret L. Kirby ◽  
Karen L. Waldo

Development of the heart is a complex process involving primary and secondary heart fields that are set aside to generate myocardial and endocardial cell lineages. The molecular inductions that occur in the primary heart field appear to be recapitulated in induction and myocardial differentiation of the secondary heart field, which adds the conotruncal segments to the primary heart tube. While much is now known about the initial steps and factors involved in induction of myocardial differentiation, little is known about induction of endocardial development. Many of the genes expressed by nascent myocardial cells, which then become committed to a specific heart segment, have been identified and studied. In addition to the heart fields, several other “extracardiac” cell populations contribute to the fully functional mature heart. Less is known about the genetic programs of extracardiac cells as they enter the heart and take part in cardiogenesis. The molecular/genetic basis of many congenital cardiac defects has been elucidated in recent years as a result of new insights into the molecular control of developmental events.


Sign in / Sign up

Export Citation Format

Share Document