Not Just Inductive: A Critical Mechanical Role for the Endoderm During Heart Tube Assembly

Author(s):  
Victor D. Varner ◽  
Larry A. Taber

The heart is the first functioning organ to form during development. Similar to other organ primordia, the embryonic heart forms as a simple tube — in this case, a straight muscle-wrapped tube situated on the ventral side of the embryo. During gastrulation, the cardiac progenitors reside in the lateral plate mesoderm but maintain close contact with the underlying endoderm. In amniotes, these bilateral heart fields are initially organized as a pair of flat epithelia that move toward the embryonic midline and fuse above the anterior intestinal portal (AIP) to form the heart tube. This medial motion is typically attributed to active mesodermal migration over the underlying endoderm. In this view, the role of the endoderm is two-fold: to serve as a mechanically passive substrate for the crawling mesoderm and to secrete various growth factors necessary for cardiac specification and differentiation.

2018 ◽  
Vol 10 (1) ◽  
pp. 87-100 ◽  
Author(s):  
Charles Yoon ◽  
Hannah Song ◽  
Ting Yin ◽  
Damaris Bausch-Fluck ◽  
Andreas P. Frei ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jose L Pelliccia ◽  
Granton A Jindal ◽  
Rebecca D Burdine

Vertebrate embryonic patterning depends on signaling from Nodal, a TGFβ superfamily member. There are three Nodal orthologs in zebrafish; southpaw directs left-right asymmetries, while squint and cyclops function earlier to pattern mesendoderm. TGFβ member Vg1 is implicated in mesoderm formation but the role of the zebrafish ortholog, Growth differentiation factor 3 (Gdf3), has not been fully explored. We show that zygotic expression of gdf3 is dispensable for embryonic development, while maternally deposited gdf3 is required for mesendoderm formation and dorsal-ventral patterning. We further show that Gdf3 can affect left-right patterning at multiple stages, including proper development of regional cell morphology in Kupffer’s vesicle and the establishment of southpaw expression in the lateral plate mesoderm. Collectively, our data indicate that gdf3 is critical for robust Nodal signaling at multiple stages in zebrafish embryonic development.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Hajime Fukui ◽  
Takahiro Miyazaki ◽  
Renee Wei-Yan Chow ◽  
Hiroyuki Ishikawa ◽  
Hiroyuki Nakajima ◽  
...  

The differentiation of the lateral plate mesoderm cells into heart field cells constitutes a critical step in the development of cardiac tissue and the genesis of functional cardiomyocytes. Hippo signaling controls cardiomyocyte proliferation, but the role of Hippo signaling during early cardiogenesis remains unclear. Here, we show that Hippo signaling regulates atrial cell number by specifying the developmental potential of cells within the anterior lateral plate mesoderm (ALPM), which are incorporated into the venous pole of the heart tube and ultimately into the atrium of the heart. We demonstrate that Hippo signaling acts through large tumor suppressor kinase 1/2 to modulate BMP signaling and the expression of hand2, a key transcription factor that is involved in the differentiation of atrial cardiomyocytes. Collectively, these results demonstrate that Hippo signaling defines venous pole cardiomyocyte number by modulating both the number and the identity of the ALPM cells that will populate the atrium of the heart.


Development ◽  
1999 ◽  
Vol 126 (9) ◽  
pp. 1805-1810 ◽  
Author(s):  
C. Lanctot ◽  
A. Moreau ◽  
M. Chamberland ◽  
M.L. Tremblay ◽  
J. Drouin

The restricted expression of the Ptx1 (Pitx1) gene in the posterior half of the lateral plate mesoderm has suggested that it may play a role in specification of posterior structures, in particular, specification of hindlimb identity. Ptx1 is also expressed in the most anterior ectoderm, the stomodeum, and in the first branchial arch. Ptx1 expression overlaps with that of Ptx2 in stomodeum and in posterior left lateral plate mesoderm. We now show that targeted inactivation of the mouse Ptx1 gene severely impairs hindlimb development: the ilium and knee cartilage are absent and the long bones are underdeveloped. Greater reduction of the right femur size in Ptx1 null mice suggests partial compensation by Ptx2 on the left side. The similarly sized tibia and fibula of mutant hindlimbs may be taken to resemble forelimb bones: however, the mutant limb buds appear to have retained their molecular identity as assessed by forelimb expression of Tbx5 and by hindlimb expression of Tbx4, even though Tbx4 expression is decreased in Ptx1 null mice. The hindlimb defects appear to be, at least partly, due to abnormal chondrogenesis. Since the most affected structures derive from the dorsal side of hindlimb buds, the data suggest that Ptx1 is responsible for patterning of these dorsal structures and that as such it may control development of hindlimb-specific features. Ptx1 inactivation also leads to loss of bones derived from the proximal part of the mandibular mesenchyme. The dual role of Ptx1 revealed by the gene knockout may reflect features of the mammalian jaw and hindlimbs that were acquired at a similar time during tetrapod evolution.


Development ◽  
2001 ◽  
Vol 128 (16) ◽  
pp. 3179-3188 ◽  
Author(s):  
Karen L. Waldo ◽  
Donna H. Kumiski ◽  
Kathleen T. Wallis ◽  
Harriett A. Stadt ◽  
Mary. R. Hutson ◽  
...  

The primary heart tube is an endocardial tube, ensheathed by myocardial cells, that develops from bilateral primary heart fields located in the lateral plate mesoderm. Earlier mapping studies of the heart fields performed in whole embryo cultures indicate that all of the myocardium of the developed heart originates from the primary heart fields. In contrast, marking experiments in ovo suggest that the atrioventricular canal, atria and conotruncus are added secondarily to the straight heart tube during looping. The results we present resolve this issue by showing that the heart tube elongates during looping, concomitant with accretion of new myocardium. The atria are added progressively from the caudal primary heart fields bilaterally, while the myocardium of the conotruncus is elongated from a midline secondary heart field of splanchnic mesoderm beneath the floor of the foregut. Cells in the secondary heart field express Nkx2.5 and Gata-4, as do the cells of the primary heart fields. Induction of myocardium appears to be unnecessary at the inflow pole, while it occurs at the outflow pole of the heart. Accretion of myocardium at the junction of the inflow myocardium with dorsal mesocardium is completed at stage 12 and later (stage 18) from the secondary heart field just caudal to the outflow tract. Induction of myocardium appears to move in a caudal direction as the outflow tract translocates caudally relative to the pharyngeal arches. As the cells in the secondary heart field begin to move into the outflow or inflow myocardium,they express HNK-1 initially and then MF-20, a marker for myosin heavy chain. FGF-8 and BMP-2 are present in the ventral pharynx and secondary heart field/outflow myocardium, respectively, and appear to effect induction of the cells in a manner that mimics induction of the primary myocardium from the primary heart fields. Neither FGF-8 nor BMP-2 is present as inflow myocardium is added from the primary heart fields. The addition of a secondary myocardium to the primary heart tube provides a new framework for understanding several null mutations in mice that cause defective heart development.


Development ◽  
1997 ◽  
Vol 124 (9) ◽  
pp. 1631-1642 ◽  
Author(s):  
P.P. Tam ◽  
M. Parameswaran ◽  
S.J. Kinder ◽  
R.P. Weinberger

The cardiogenic potency of cells in the epiblast of the early primitive-streak stage (early PS) embryo was tested by heterotopic transplantation. The results of this study show that cells in the anterior and posterior epiblast of the early PS-stage embryos have similar cardiogenic potency, and that they differentiated to heart cells after they were transplanted directly to the heart field of the late PS embryo. That the epiblast cells can acquire a cardiac fate without any prior act of ingression through the primitive streak or movement within the mesoderm suggests that neither morphogenetic event is critical for the specification of the cardiogenic fate. The mesodermal cells that have recently ingressed through the primitive streak can express a broad cell fate that is characteristic of the pre-ingressed cells in the host when they were returned to the epiblast. However, mesoderm cells that have ingressed through the primitive streak did not contribute to the lateral plate mesoderm after transplantation back to the epiblast, implying that some restriction of lineage potency may have occurred during ingression. Early PS stage epiblast cells that were transplanted to the epiblast of the mid PS host embryos colonised the embryonic mesoderm but not the extraembryonic mesoderm. This departure from the normal cell fate indicates that the allocation of epiblast cells to the mesodermal lineages is dependent on the timing of their recruitment to the primitive streak and the morphogenetic options that are available to the ingressing cells at that instance.


2012 ◽  
Vol 23 (5) ◽  
pp. 945-954 ◽  
Author(s):  
François Naye ◽  
Marianne L. Voz ◽  
Nathalie Detry ◽  
Matthias Hammerschmidt ◽  
Bernard Peers ◽  
...  

In vertebrates, pancreas and liver arise from bipotential progenitors located in the embryonic gut endoderm. Bone morphogenic protein (BMP) and fibroblast growth factor (FGF) signaling pathways have been shown to induce hepatic specification while repressing pancreatic fate. Here we show that BMP and FGF factors also play crucial function, at slightly later stages, in the specification of the ventral pancreas. By analyzing the pancreatic markers pdx1, ptf1a, and hlxb9la in different zebrafish models of BMP loss of function, we demonstrate that the BMP pathway is required between 20 and 24 h postfertilization to specify the ventral pancreatic bud. Knockdown experiments show that bmp2a, expressed in the lateral plate mesoderm at these stages, is essential for ventral pancreas specification. Bmp2a action is not restricted to the pancreatic domain and is also required for the proper expression of hepatic markers. By contrast, through the analysis of fgf10−/−; fgf24−/− embryos, we reveal the specific role of these two FGF ligands in the induction of the ventral pancreas and in the repression of the hepatic fate. These mutants display ventral pancreas agenesis and ectopic masses of hepatocytes. Overall, these data highlight the dynamic role of BMP and FGF in the patterning of the hepatopancreatic region.


Development ◽  
2000 ◽  
Vol 127 (18) ◽  
pp. 3961-3970 ◽  
Author(s):  
N. Mercader ◽  
E. Leonardo ◽  
M.E. Piedra ◽  
C. Martinez-A ◽  
M.A. Ros ◽  
...  

Vertebrate limbs develop in a temporal proximodistal sequence, with proximal regions specified and generated earlier than distal ones. Whereas considerable information is available on the mechanisms promoting limb growth, those involved in determining the proximodistal identity of limb parts remain largely unknown. We show here that retinoic acid (RA) is an upstream activator of the proximal determinant genes Meis1 and Meis2. RA promotes proximalization of limb cells and endogenous RA signaling is required to maintain the proximal Meis domain in the limb. RA synthesis and signaling range, which initially span the entire lateral plate mesoderm, become restricted to proximal limb domains by the apical ectodermal ridge (AER) activity following limb initiation. We identify fibroblast growth factor (FGF) as the main molecule responsible for this AER activity and propose a model integrating the role of FGF in limb cell proliferation, with a specific function in promoting distalization through inhibition of RA production and signaling.


Author(s):  
Ashok Ramasubramanian ◽  
Nandan L. Nerurkar ◽  
Kate H. Achtien ◽  
Larry A. Taber

Cardiac c-looping is an important developmental phase, as the initially straight heart tube (HT) is transformed into a c-shaped tube. Looping consists of two distinct processes: ventral bending, which is likely driven by actin polymerization, and dextral torsion, which is likely due to external forces. These forces are applied by a membrane enveloping the ventral side of the heart, the splanchnopleure (SPL, Fig. 2A) and a pair of atria that flank the caudal end of the heart tube (HT, Fig 1A). In particular, the atria provide the initial push, biasing the HT towards the right while the SPL applies a ventrally directed force, which causes the HT to rotate using the dorsal mesocardium (DM, Fig. 2A) as a pivot (the DM attaches the dorsal length of the heart to the body of the embryo).


Development ◽  
1998 ◽  
Vol 125 (24) ◽  
pp. 4863-4876 ◽  
Author(s):  
A.J. Roebroek ◽  
L. Umans ◽  
I.G. Pauli ◽  
E.J. Robertson ◽  
F. van Leuven ◽  
...  

We have examined the role of Furin in postimplantation-stage mouse embryos by analyzing both the expression pattern of fur mRNA and the developmental consequences of a loss-of-function mutation at the fur locus. At early stages (day 7.5), fur mRNA is abundant in extraembryonic endoderm and mesoderm, anterior visceral endoderm, and in precardiac mesoderm. 1 day later fur is expressed throughout the heart tube and in the lateral plate mesoderm, notochordal plate and definitive gut endoderm. Embryos lacking Furin die between days 10.5 and 11.5, presumably due to hemodynamic insufficiency associated with severe ventral closure defects and the failure of the heart tube to fuse and undergo looping morphogenesis. Morphogenesis of the yolk sac vasculature is also abnormal, although blood islands and endothelial precursors form. Analysis of cardiac and endodermal marker genes shows that while both myocardial precursors and definitive endoderm cells are specified, their numbers and migratory properties are compromised. Notably, mutant embryos fail to undergo axial rotation, even though Nodal and eHand, two molecular markers of left-right asymmetry, are appropriately expressed. Overall, the present data identify Furin as an important activator of signals responsible for ventral closure and embryonic turning.


Sign in / Sign up

Export Citation Format

Share Document