scholarly journals Effects of the Hubble parameter on the cosmic growth of the first quasars

2020 ◽  
Vol 496 (1) ◽  
pp. 888-893 ◽  
Author(s):  
Rafael C Nunes ◽  
Fabio Pacucci

ABSTRACT Supermassive black holes (SMBHs) play a crucial role in the evolution of galaxies and are currently detected up to $z$ ∼ 7.5. Theories describing black hole (BH) growth are challenged by how rapidly seeds with initial mass $M_\bullet \lesssim 10^5 \, {\rm M_\odot }$, formed at $z$ ∼ 20–30, grew to $M_\bullet \sim 10^9 \, {\rm M_\odot }$ by $z$ ∼ 7. Here we study the effects of the value of the Hubble parameter, H0, on models describing the early growth of BHs. First, we note that the predicted mass of a quasar at $z$ = 6 changes by $\gt 300{{\ \rm per\ cent}}$ if the underlying Hubble parameter used in the model varies from H0 = 65 to H0 = 74 km s−1Mpc−1, a range encompassing current estimates. Employing an MCMC approach based on priors from $z$ ≳ 6.5 quasars and on H0, we study the interconnection between H0 and the parameters describing BH growth: seed mass Mi and Eddington ratio fEdd. Assuming an Eddington ratio of fEdd = 0.7, in agreement with previous estimates, we find $H_0 = 73.6^{+1.2}_{-3.3}$ km s−1Mpc−1. In a second analysis, allowing all the parameters to vary freely, we find log (Mi/M⊙) > 4.5 (at 95 per cent CL), $H_0 = 74^{+1.5}_{-1.4}$ km s−1Mpc−1 and $f_{\rm Edd}=0.77^{+0.035}_{-0.026}$ at 68 per cent CL. Our results on the typical Eddington ratio are in agreement with previous estimates. Current values of the Hubble parameter strongly favour heavy seed formation scenarios, with $M_i \gtrsim 10^4 \, {\rm M_\odot }$. In our model, with the priors on BH masses of quasars used, light seed formation scenarios are rejected at ∼3σ.

2020 ◽  
Vol 496 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Kuan-Wei Huang ◽  
Yueying Ni ◽  
Yu Feng ◽  
Tiziana Di Matteo

ABSTRACT The paper examines the early growth of supermassive black holes (SMBHs) in cosmological hydrodynamic simulations with different BH seeding scenarios. Employing the constrained Gaussian realization, we reconstruct the initial conditions in the large-volume bluetides simulation and run them to z = 6 to cross-validate that the method reproduces the first quasars and their environments. Our constrained simulations in a volume of $(15 \, h^{-1} {\rm Mpc})^3$ successfully recover the evolution of large-scale structure and the stellar and BH masses in the vicinity of a ${\sim}10^{12} \, M_{\odot }$ halo which we identified in bluetides at z ∼ 7 hosting a ${\sim}10^9 \, M_{\odot }$ SMBH. Among our constrained simulations, only the ones with a low-tidal field and high-density peak in the initial conditions induce the fastest BH growth required to explain the z > 6 quasars. We run two sets of simulations with different BH seed masses of 5 × 103, 5 × 104, and $5 \times 10^5 \, h^{-1} M_{\odot }$, (i) with the same ratio of halo to BH seed mass and (ii) with the same halo threshold mass. At z = 6, all the SMBHs converge in mass to ${\sim}10^9 \, M_{\odot }$ except for the one with the smallest seed in (ii) undergoing critical BH growth and reaching 108 – $10^9 \, M_{\odot }$, albeit with most of the growth in (ii) delayed compared to set (i). The finding of eight BH mergers in the small-seed scenario (four with masses 104 – $10^6 \, M_{\odot }$ at z > 12), six in the intermediate-seed scenario, and zero in the large-seed scenario suggests that the vast BHs in the small-seed scenario merge frequently during the early phases of the growth of SMBHs. The increased BH merger rate for the low-mass BH seed and halo threshold scenario provides an exciting prospect for discriminating BH formation mechanisms with the advent of multimessenger astrophysics and next-generation gravitational wave facilities.


2021 ◽  
Vol 503 (4) ◽  
pp. 6098-6111
Author(s):  
Angelo Ricarte ◽  
Michael Tremmel ◽  
Priyamvada Natarajan ◽  
Charlotte Zimmer ◽  
Thomas Quinn

ABSTRACT We characterize the population of wandering black holes, defined as those physically offset from their halo centres, in the romulus cosmological simulations. Unlike most other currently available cosmological simulations, black holes are seeded based on local gas properties and are permitted to evolve dynamically without being fixed at halo centres. Tracking these black holes allows us to make robust predictions about the offset population. We find that the number of wandering black holes scales roughly linearly with the halo mass, such that we expect thousands of wandering black holes in galaxy cluster haloes. Locally, these wanderers account for around 10 per cent of the local black hole mass budget once seed masses are accounted for. Yet for higher redshifts ($z$ ≳ 4), wandering black holes both outweigh and outshine their central supermassive counterparts. Most wandering black holes, we find, remain close to the seed mass and originate from the centres of previously disrupted satellite galaxies. While most do not retain a resolved stellar counterpart, those that do are situated farther out at larger fractions of the virial radius. Wanderers with higher luminosities are preferentially at lower radius, more massive, and either closer to their host’s mid-planes or associated with a stellar overdensity. This analysis shows that our current census of supermassive black holes is incomplete and that a substantial population of off-centre wanderers likely exists.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 279
Author(s):  
Zdeněk Stuchlík ◽  
Jaroslav Vrba

We study epicyclic oscillatory motion along circular geodesics of the Simpson–Visser meta-geometry describing in a unique way regular black-bounce black holes and reflection-symmetric wormholes by using a length parameter l. We give the frequencies of the orbital and epicyclic motion in a Keplerian disc with inner edge at the innermost circular geodesic located above the black hole outer horizon or on the our side of the wormhole. We use these frequencies in the epicyclic resonance version of the so-called geodesic models of high-frequency quasi-periodic oscillations (HF QPOs) observed in microquasars and around supermassive black holes in active galactic nuclei to test the ability of this meta-geometry to improve the fitting of HF QPOs observational data from the surrounding of supermassive black holes. We demonstrate that this is really possible for wormholes with sufficiently high length parameter l.


2019 ◽  
Vol 14 (S351) ◽  
pp. 80-83 ◽  
Author(s):  
Melvyn B. Davies ◽  
Abbas Askar ◽  
Ross P. Church

AbstractSupermassive black holes are found in most galactic nuclei. A large fraction of these nuclei also contain a nuclear stellar cluster surrounding the black hole. Here we consider the idea that the nuclear stellar cluster formed first and that the supermassive black hole grew later. In particular we consider the merger of three stellar clusters to form a nuclear stellar cluster, where some of these clusters contain a single intermediate-mass black hole (IMBH). In the cases where multiple clusters contain IMBHs, we discuss whether the black holes are likely to merge and whether such mergers are likely to result in the ejection of the merged black hole from the nuclear stellar cluster. In some cases, no supermassive black hole will form as any merger product is not retained. This is a natural pathway to explain those galactic nuclei that contain a nuclear stellar cluster but apparently lack a supermassive black hole; M33 being a nearby example. Alternatively, if an IMBH merger product is retained within the nuclear stellar cluster, it may subsequently grow, e.g. via the tidal disruption of stars, to form a supermassive black hole.


2019 ◽  
Vol 15 (S356) ◽  
pp. 376-376
Author(s):  
Ingyin Zaw

AbstractNuclear black holes in dwarf galaxies are important for understanding the low end of the supermassive black hole mass distribution and the black hole-host galaxy scaling relations. IC 750 is a rare system which hosts an AGN, found in ˜0.5% of dwarf galaxies, with circumnuclear 22 GHz water maser emission, found in ˜3–5% of Type 2 AGNs. Water masers, the only known tracer of warm, dense gas in the center parsec of AGNs resolvable in position and velocity, provide the most precise and accurate mass measurements of SMBHs outside the local group. We have mapped the maser emission in IC 750 and find that it traces a nearly edge-on warped disk, 0.2 pc in diameter. The central black hole has an upper limit mass of ˜1 × 105 M⊙ and a best fit mass of ˜8 × 104 M⊙, one to two orders of magnitude below what is expected from black hole-galaxy scaling relations. This has implications for models of black hole seed formation in the early universe, the growth of black holes, and their co-evolution with their host galaxies.


2021 ◽  
Vol 2021 (11) ◽  
pp. 059
Author(s):  
Z. Stuchlík ◽  
J. Vrba

Abstract Recently introduced exact solution of the Einstein gravity coupled minimally to an anisotropic fluid representing dark matter can well represent supermassive black holes in galactic nuclei with realistic distribution of dark matter around the black hole, given by the Hernquist-like density distribution. For these fluid-hairy black hole spacetimes, properties of the gravitational radiation, quasinormal ringing, and optical phenomena were studied, giving interesting results. Here, using the range of physical parameters of these spacetimes allowing for their relevance in astrophysics, we study the epicyclic oscillatory motion of test particles in these spacetimes. The frequencies of the orbital and epicyclic motion are applied in the epicyclic resonance variant of the geodesic model of quasiperiodic oscillations (QPOs) observed in active galactic nuclei to demonstrate the possibility to solve the cases where the standard vacuum black hole spacetimes are not allowing for explanation of the observed data. We demonstrate that the geodesic model can explain the QPOs observed in most of the active galactic nuclei for the fluid-hairy black holes with reasonable halo parameters.


2019 ◽  
Vol 493 (1) ◽  
pp. 1500-1511 ◽  
Author(s):  
Francesco Shankar ◽  
David H Weinberg ◽  
Christopher Marsden ◽  
Philip J Grylls ◽  
Mariangela Bernardi ◽  
...  

ABSTRACT The masses of supermassive black holes at the centres of local galaxies appear to be tightly correlated with the mass and velocity dispersions of their galactic hosts. However, the local Mbh–Mstar relation inferred from dynamically measured inactive black holes is up to an order-of-magnitude higher than some estimates from active black holes, and recent work suggests that this discrepancy arises from selection bias on the sample of dynamical black hole mass measurements. In this work, we combine X-ray measurements of the mean black hole accretion luminosity as a function of stellar mass and redshift with empirical models of galaxy stellar mass growth, integrating over time to predict the evolving Mbh–Mstar relation. The implied relation is nearly independent of redshift, indicating that stellar and black hole masses grow, on average, at similar rates. Matching the de-biased local Mbh–Mstar relation requires a mean radiative efficiency ε ≳ 0.15, in line with theoretical expectations for accretion on to spinning black holes. However, matching the ‘raw’ observed relation for inactive black holes requires ε ∼ 0.02, far below theoretical expectations. This result provides independent evidence for selection bias in dynamically estimated black hole masses, a conclusion that is robust to uncertainties in bolometric corrections, obscured active black hole fractions, and kinetic accretion efficiency. For our fiducial assumptions, they favour moderate-to-rapid spins of typical supermassive black holes, to achieve ε ∼ 0.12–0.20. Our approach has similarities to the classic Soltan analysis, but by using galaxy-based data instead of integrated quantities we are able to focus on regimes where observational uncertainties are minimized.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040054
Author(s):  
M. Yu. Piotrovich ◽  
V. L. Afanasiev ◽  
S. D. Buliga ◽  
T. M. Natsvlishvili

Based on spectropolarimetry for a number of active galactic nuclei in Seyfert 1 type galaxies observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura-Sunyaev accretion disk model. More than 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.


2019 ◽  
Vol 487 (3) ◽  
pp. 3650-3663 ◽  
Author(s):  
J K Hoormann ◽  
P Martini ◽  
T M Davis ◽  
A King ◽  
C Lidman ◽  
...  

ABSTRACT Black hole mass measurements outside the local Universe are critically important to derive the growth of supermassive black holes over cosmic time, and to study the interplay between black hole growth and galaxy evolution. In this paper, we present two measurements of supermassive black hole masses from reverberation mapping (RM) of the broad C iv emission line. These measurements are based on multiyear photometry and spectroscopy from the Dark Energy Survey Supernova Program (DES-SN) and the Australian Dark Energy Survey (OzDES), which together constitute the OzDES RM Program. The observed reverberation lag between the DES continuum photometry and the OzDES emission line fluxes is measured to be $358^{+126}_{-123}$ and $343^{+58}_{-84}$ d for two quasars at redshifts of 1.905 and 2.593, respectively. The corresponding masses of the two supermassive black holes are 4.4 × 109 and 3.3 × 109 M⊙, which are among the highest redshift and highest mass black holes measured to date with RM studies. We use these new measurements to better determine the C iv radius−luminosity relationship for high-luminosity quasars, which is fundamental to many quasar black hole mass estimates and demographic studies.


Sign in / Sign up

Export Citation Format

Share Document