The role of the mass ratio in ballistic capture

2020 ◽  
Vol 498 (1) ◽  
pp. 1515-1529
Author(s):  
Zong-Fu Luo

ABSTRACT A massless particle can be naturally captured by a celestial body with the aid of a third body. In this work, the influence of the mass ratio on ballistic capture is investigated in the planar circular restricted three-body problem (CR3BP) model. Four typical dynamical environments with decreasing mass ratios, that is, the Pluto–Charon, Earth–Moon, Sun–Jupiter, and Saturn–Titan systems, are considered. A generalized method is introduced to derive ballistic capture orbits by starting from a set of initial conditions and integrating backward in time. Particular attention is paid to the backward escape orbits, following which a test particle can be temporarily trapped by a three-body gravity system, although the particle will eventually deviate away from the system. This approach is applied to the four candidate systems with a series of Jacobi constant levels to survey and compare the capture probability (quantitatively) and capture capability (qualitatively) when the mass ratio varies. Capture mechanisms inducing favourable ballistic capture are discussed. Moreover, the possibility and stability of capture by secondary celestial bodies are analysed. The obtained results may be useful in explaining the capture phenomena of minor bodies or in designing mission trajectories for interplanetary probes.

1966 ◽  
Vol 25 ◽  
pp. 157-169 ◽  
Author(s):  
M. Hénon

A number of orbits have been computed in the plane restricted three-body problem; the two main bodies have the same mass and move on a circular orbit. By consideration of the successive intersections of the orbit with thexaxis, the problem can be reduced to the study of a plane area-preserving mapping. A second integral, distinct from Jacobi's integral, seems to exist inside given ranges of initial conditions, but not outside. The general picture is quite similar to the one found in the problem of the third integral of galactic motion. Extension of this work to other values of the mass ratio is under way.


1999 ◽  
Vol 172 ◽  
pp. 443-444
Author(s):  
Massimiliano Guzzo

Many classical problems of Mechanics can be studied regarding them as perturbations of integrable systems; this is the case of the fast rotations of the rigid body in an arbitrary potential, the restricted three body problem with small values of the mass-ratio, and others. However, the application of the classical results of Hamiltonian Perturbation Theory to these systems encounters difficulties due to the presence of the so-called ‘degeneracy’. More precisely, the Hamiltonian of a quasi-integrable degenerate system looks likewhere (I, φ) є U × Tn, U ⊆ Rn, are action-angle type coordinates, while the degeneracy of the system manifests itself with the presence of the ‘degenerate’ variables (p, q) є B ⊆ R2m. The KAM theorem has been applied under quite general assumptions to degenerate Hamiltonians (Arnold, 1963), while the Nekhoroshev theorem (Nekhoroshev, 1977) provides, if h is convex, the following bounds: there exist positive ε0, a0, t0 such that if ε < ε0 then if where Te is the escape time of the solution from the domain of (1). An escape is possible because the motion of the degenerate variables can be bounded in principle only by , and so over the time they can experience large variations. Therefore, there is the problem of individuating which assumptions on the perturbation and on the initial data allow to control the motion of the degenerate variables over long times.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Vivian Martins Gomes ◽  
Antonio Fernando Bertachini de Almeida Prado ◽  
Justyna Golebiewska

The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.


2017 ◽  
Vol 5 (2) ◽  
pp. 69
Author(s):  
Nishanth Pushparaj ◽  
Ram Krishan Sharma

Progression of f-type family of periodic orbits, their nature, stability and location nearer the smaller primary for different mass ratios in the framework of circular restricted three-body problem is studied using Poincaré surfaces of section. The orbits around the smaller primary are found to decrease in size with increase in Jacobian Constant C, and move very close towards the smaller primary. The orbit bifurcates into two orbits with the increase in C to 4.2. The two orbits that appear for this value of C belong to two adjacent separate families: one as direct orbit belonging to family g of periodic orbits and other one as retrograde orbit belonging to family f of periodic orbits. This bifurcation is interesting. These orbits increase in size with increase in mass ratio. The elliptic orbits found within the mass ratio 0 < µ ≤ 0.1 have eccentricity less than 0.2 and the orbits found above the mass ratio µ > 0.1 are elliptical orbits with eccentricity above 0.2. Deviations in the parameters: eccentricity, semi-major axis and time period of these orbits with solar radiation pressure q are computed in the frame work of photogravitational restricted Three-body problem in addition to the restricted three-body problem. These parameters are found to decrease with increase in the solar radiation pressure.


2020 ◽  
Vol 496 (3) ◽  
pp. 3700-3707
Author(s):  
L Liberato ◽  
O C Winter

ABSTRACT Although the search for extrasolar co-orbital bodies has not had success so far, it is believed that they must be as common as they are in the Solar system. Co-orbital systems have been widely studied, and there are several works on stability and even on formation. However, for the size and location of the stable regions, authors usually describe their results but do not provide a way to find them without numerical simulations, and, in most cases, the mass ratio value range is small. In this work, we study the structure of co-orbital stable regions for a wide range of mass ratio systems and build empirical equations to describe them. It allows estimating the size and location of co-orbital stable regions from a few system parameters. Thousands of massless particles were distributed in the co-orbital region of a massive secondary body and numerically simulated for a wide range of mass ratios (μ) adopting the planar circular restricted three-body problem. The results show that the upper limit of horseshoe regions is between 9.539 × 10−4 &lt; μ &lt; 1.192 × 10−3, which corresponds to a minimum angular distance from the secondary body to the separatrix of between 27.239º and 27.802º. We also found that the limit to existence of stability in the co-orbital region is about μ = 2.3313 × 10−2, much smaller than the value predicted by the linear theory. Polynomial functions to describe the stable region parameters were found, and they represent estimates of the angular and radial widths of the co-orbital stable regions for any system with 9.547 × 10−5 ≤ μ ≤ 2.331 × 10−2.


1983 ◽  
Vol 74 ◽  
pp. 397-410 ◽  
Author(s):  
R. Gonczi ◽  
Ch. Froeschlé ◽  
C. Froeschlé

AbstractWe study numerically the competition between the Poynting-Robertson drag and the gravitational interaction of grains with Jupiter near orbital resonances. The computations are based on the plane elliptic restricted three body problem. Numerical investigations show that the grains always cross the resonance region without any oscillation, except in the special case where the grains were initially inside the resonance. Such grains are temporarily trapped, then due to the drag they are ejected out of the resonance. The trapping time of a particle turns out to be much more important in the 3/2 and 2/1 commensurabilities than in the others.A numerical exploration of numerous orbits for different initial conditions and different sizes of grains has been performed. The trapping time appears to be closely connected to the size of the librator-type orbits regions; it increases with the initial eccentricity of the orbit, and is also proportional to the radius and the density of the particle.


1999 ◽  
Vol 172 ◽  
pp. 291-302
Author(s):  
Steven R. Chesley

AbstractThe isosceles three-body problem with Sitnikov-type symmetry has been reduced to a two-dimensional area-preserving Poincaré map depending on two parameters: the mass ratio, and the total angular momentum. The entire parameter space is explored, contrasting new results with ones obtained previously in the planar (zero angular momentum) case. The region of allowable motion is divided into subregions according to a symbolic dynamics representation. This enables a geometric description of the system based on the intersection of the images of the subregions with the preimages. The paper also describes the regions of allowable motion and bounded motion, and discusses the stability of the dominant periodic orbit.


1988 ◽  
Vol 8 (8) ◽  
pp. 63-72 ◽  

AbstractThe existence of transversal ejection—collision orbits in the restricted three-body problem is shown to imply, via the KAM theorem, the existence, for certain intervals of (large) values of the Jacobi constant, of an uncountable number of invariant punctured tori in the corresponding (non-compact) energy surface. The proof is based on a comparison between Levi-Civita and McGehee regularizing variables. That these transversal ejection-collision orbits do actually exist was proved in [5] in the case where one of the primaries has a small mass and the zero-mass body revolves around the other (and for all values of the Jacobi constant compatible with the existence of three connected components for the Hill region); it is proved here without any restriction on the masses, well in the spirit of Conley's thesis [3].


Sign in / Sign up

Export Citation Format

Share Document