scholarly journals Analysis of quiet-sun turbulence on the basis of SDO/HMI and goode solar telescope data

2020 ◽  
Vol 497 (4) ◽  
pp. 5405-5412 ◽  
Author(s):  
Valentina I Abramenko ◽  
Vasyl B Yurchyshyn

ABSTRACT We analysed line-of-sight magnetic fields and magnetic power spectra of an undisturbed photosphere using magnetograms acquired by the Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamic Observatory and the Near InfraRed Imaging Spectrapolarimeter (NIRIS) operating at the Goode Solar Telescope of the Big Bear Solar Observatory. In the NIRIS data, we revealed thin flux tubes of 200–400 km in diameter and of 1000–2000 G field strength. The HMI power spectra determined for a coronal hole, a quiet sun, and a plage areas exhibit the same spectral index of −1 on a broad range of spatial scales from 10–20 Mm down to 2.4 Mm. This implies that the same mechanism(s) of magnetic field generation operate everywhere in the undisturbed photosphere. The most plausible one is the local turbulent dynamo. When compared to the HMI spectra, the −1.2 slope of the NIRIS spectrum appears to be more extended into the short spatial range until the cut-off at 0.8–0.9 Mm, after which it continues with a steeper slope of −2.2. Comparison of the observed and Kolmogorov-type spectra allowed us to infer that the Kolmogorov turbulent cascade cannot account for more than 35 per cent of the total magnetic energy observed in the scale range of 3.5–0.3 Mm. The energy excess can be attributed to other mechanisms of field generation such as the local turbulent dynamo and magnetic superdiffusivity observed in an undisturbed photosphere that can slow down the rate of the Kolmogorov cascade leading to a shallower resulting spectrum.

2020 ◽  
Vol 499 (4) ◽  
pp. 5363-5365
Author(s):  
Itzhak Goldman

ABSTRACT Observational power spectra of the photospheric magnetic field turbulence, of the quiet-sun, were presented in a recent paper by Abramenko & Yurchyshyn. Here, I focus on the power spectrum derived from the observations of the Near InfraRed Imaging Spectrapolarimeter operating at the Goode Solar Telescope. The latter exhibits a transition from a power law with index −1.2 to a steeper power law with index −2.2, for smaller spatial scales. This paper presents an interpretation of this change. Furthermore, this interpretation provides an estimate for the effective width of the turbulent layer probed by the observations. The latter turns out to be practically equal to the depth of the photosphere.


2008 ◽  
Vol 15 (6) ◽  
pp. 831-846 ◽  
Author(s):  
M. E. Dieckmann

Abstract. Recent particle-in-cell (PIC) simulation studies have addressed particle acceleration and magnetic field generation in relativistic astrophysical flows by plasma phase space structures. We discuss the astrophysical environments such as the jets of compact objects, and we give an overview of the global PIC simulations of shocks. These reveal several types of phase space structures, which are relevant for the energy dissipation. These structures are typically coupled in shocks, but we choose to consider them here in an isolated form. Three structures are reviewed. (1) Simulations of interpenetrating or colliding plasma clouds can trigger filamentation instabilities, while simulations of thermally anisotropic plasmas observe the Weibel instability. Both transform a spatially uniform plasma into current filaments. These filament structures cause the growth of the magnetic fields. (2) The development of a modified two-stream instability is discussed. It saturates first by the formation of electron phase space holes. The relativistic electron clouds modulate the ion beam and a secondary, spatially localized electrostatic instability grows, which saturates by forming a relativistic ion phase space hole. It accelerates electrons to ultra-relativistic speeds. (3) A simulation is also revised, in which two clouds of an electron-ion plasma collide at the speed 0.9c. The inequal densities of both clouds and a magnetic field that is oblique to the collision velocity vector result in waves with a mixed electrostatic and electromagnetic polarity. The waves give rise to growing corkscrew distributions in the electrons and ions that establish an equipartition between the electron, the ion and the magnetic energy. The filament-, phase space hole- and corkscrew structures are discussed with respect to electron acceleration and magnetic field generation.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Valentina Abramenko ◽  
Olga Kutsenko

Using the magnetic field data obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO), an investigation of magnetic power spectra in the undisturbed solar photosphere was performed. The results are as follows. 1) To get a reliable estimate of a magnetic power spectrum from the uniformly distributed quiet-sun magnetic flux, a sample pattern of no less than 300 pixels length should be adopted. With smaller patterns, energy on all observable scales might be overestimated. 2) For patterns of different magnetic intensity (e.g., a coronal hole, a quiet-sun area, an area of supergranulation), the magnetic power spectra in a range of (2.5-10) Mm exhibit very close spectral indices of about -1. The observed spectrum is more shallow than the Kolmogorov-type spectrum (with a slope of -5/3) and it differs from steep spectra of active regions. Such a shallow spectrum cannot be explained by the only direct Kolmogorov’s cascade, but it can imply a small-scale turbulent dynamo action in a wide range of scales: from tens of megameters down to at least 2.5 Mm. On smaller scales, the HMI/SDO data do not allow us to reliably derive the shape of the spectrum. 3) Data make it possible to conclude that a uniform mechanism of the small-scale turbulent dynamo is at work all over the solar surface outside active regions.


1993 ◽  
Vol 157 ◽  
pp. 429-430
Author(s):  
A. Lazarian

Magnetic field generation in molecular (atomic) clouds at the early stages of galactic evolution is considered. It is shown that if there is no internal motions immersed the cloud, battery mechanisms (Lazarian 1992a) can account for the generation of thin magnetic shells around clouds insides in plasma with temperature gradients. If turbulent motions are present, the dynamo can be essential. The operation of α — ω, α2 and turbulent dynamos within molecular clouds is discussed. It is shown that the turbulent dynamo leads to generation of magnetic fields in the trace behind the cloud. These magnetic fields within the molecular clouds and in their vicinity are important for the solution of the galactic seed field problem (see Lazarian 1992b) and the formation of structures in clumpy molecular complexes.


2019 ◽  
Author(s):  
Yasuhito Narita ◽  
Wolfgang Baumjohann ◽  
Rudolf A. Treumann

Abstract. There is an increasing amount of observational evidence in space plasma for the breakdown of inertial-range spectra of magnetohydrodynamic (MHD) turbulence on spatial scales smaller than the ion inertial length. Magnetic energy spectra often exhibit a steepening, which is reminiscent of dissipation of turbulence energy, for example in wave-particle interactions. Electric energy spectra, on the other hand, tend to be flatter than those of MHD turbulence, which is indicative of a dispersive process converting magnetic into electric energy in electromagnetic wave excitation. Here we develop a model of the scaling laws and the power spectra for the Hall-inertial range in plasma turbulence. A phenomenological approach is taken. The Hall electric field attains an electrostatic component when the wave vectors are perpendicular to the mean magnetic field. The power spectra of Hall-turbulence are steep for the magnetic field with slope of −7/3 for compressible magnetic turbulence, they are flatter for the Hall electric field with slope −1/3. Our model for the Hall-turbulence serves as a likely candidate to explain the steepening of the magnetic energy spectra in the solar wind neither as indication of the dissipation range nor the dispersive range but as the Hall-inertial range. Our model also reproduces the shape of energy spectra in Kelvin-Helmholtz turbulence observed at the Earth magnetopause.


1993 ◽  
Vol 157 ◽  
pp. 237-241
Author(s):  
M. Hnatich

The large-scale magnetic field generation by the turbulent motion energy, known as turbulent dynamo [1], is perspective candidate to explain the observed stationary magnetic fields of cosmic objects.


Sign in / Sign up

Export Citation Format

Share Document