scholarly journals A search for transiting planets around FGKM dwarfs and subgiants in the TESS full frame images of the Southern ecliptic hemisphere

2020 ◽  
Vol 498 (2) ◽  
pp. 1726-1749 ◽  
Author(s):  
M Montalto ◽  
L Borsato ◽  
V Granata ◽  
G Lacedelli ◽  
L Malavolta ◽  
...  

ABSTRACT In this work, we present the analysis of 976 814 FGKM dwarf and subgiant stars in the Transiting Exoplanet Survey Telescope (TESS) full frame images (FFIs) of the Southern ecliptic hemisphere. We present a new pipeline, DIAmante, developed to extract optimized, multisector photometry from TESS FFIs and a classifier, based on the Random Forest technique, trained to discriminate plausible transiting planetary candidates from common false positives. A new statistical model was developed to provide the probability of correct identification of the source of variability. We restricted the planet search to the stars located in the least crowded regions of the sky and identified 396 transiting planetary candidates among which 252 are new detections. The candidates’ radius distribution ranges between 1 R⊕ and 2.6 RJ with median value of 1 RJ and the period distribution ranges between 0.25 and 105 d with median value of 3.8 d. The sample contains four long period candidates (P > 50 d), one of which is new, and 64 candidates with periods between 10 and 50 d (42 new ones). In the small planet radius domain (4R < R⊕), we found 39 candidates among which 15 are new detections. Additionally, we present 15 single transit events (14 new ones), a new candidate multiplanetary system, and a novel candidate around a known TOI. By using Gaia dynamical constraints, we found that 70 objects show evidence of binarity. We release a catalogue of the objects we analysed and the corresponding light curves and diagnostic figures through the MAST and ExoFOP portals.

1989 ◽  
Vol 111 ◽  
pp. 287-287
Author(s):  
Amelia Wehlau

AbstractAttention is called to the rather unusual distribution of the periods of the RR Lyrae variables in NGC 5897, a metal-poor halo globular cluster with a very low central concentration. Of the seven RR Lyrae stars known in the cluster, three have periods between 0.797 and 0.856 day and two have periods of 0.45 and 0.42 day. The other two have periods of 0.34 and 0.35 day with much lower amplitudes of variation. Due to the lack of crowding in this cluster photoelectric observations and Fourier decompositions of the resulting light curves should be possible for at least six of the RR Lyrae variables. In addition, the cluster appears to contain a non-variable horizontal branch star, SK 120, lying within the instability strip. As this is the only well documented case of such a star, photoelectric observations of this star would also be desirable.


2019 ◽  
Vol 489 (3) ◽  
pp. 3149-3161 ◽  
Author(s):  
Emily Sandford ◽  
Néstor Espinoza ◽  
Rafael Brahm ◽  
Andrés Jordán

ABSTRACT When a planet is only observed to transit once, direct measurement of its period is impossible. It is possible, however, to constrain the periods of single transiters, and this is desirable as they are likely to represent the cold and far extremes of the planet population observed by any particular survey. Improving the accuracy with which the period of single transiters can be constrained is therefore critical to enhance the long-period planet yield of surveys. Here, we combine Gaia parallaxes with stellar models and broad-band photometry to estimate the stellar densities of K2 planet host stars, then use that stellar density information to model individual planet transits and infer the posterior period distribution. We show that the densities we infer are reliable by comparing with densities derived through asteroseismology, and apply our method to 27 validation planets of known (directly measured) period, treating each transit as if it were the only one, as well as to 12 true single transiters. When we treat eccentricity as a free parameter, we achieve a fractional period uncertainty over the true single transits of $94^{+87}_{-58}{{\ \rm per\ cent}}$, and when we fix e = 0, we achieve fractional period uncertainty $15^{+30}_{-6}{{\ \rm per\ cent}}$, a roughly threefold improvement over typical period uncertainties of previous studies.


2010 ◽  
Vol 6 (S276) ◽  
pp. 163-166 ◽  
Author(s):  
Luca Fossati ◽  
Carole A. Haswell ◽  
Cynthia S. Froning

AbstractWASP-12 is a 2 Gyr old solar type star, hosting WASP-12b, one of the most irradiated transiting planets currently known. We observed WASP-12 in the UV with the Cosmic Origins Spectrograph (COS) on HST. The light curves we obtained in the three covered UV wavelength ranges, all of which contain many photospheric absorption lines, imply effective radii of 2.69±0.24 RJ, 2.18±0.18 RJ, and 2.66±0.22 RJ, suggesting that the planet is surrounded by an absorbing cloud which overfills the Roche lobe. We clearly detected enhanced transit depths at the wavelengths of the MgII h&k resonance lines. Spectropolarimetric analysis of the host star was also performed. We found no global magnetic field, but there were hints of atmospheric pollution, which might be connected to the very unusual activity of the host star.


2019 ◽  
Vol 623 ◽  
pp. L12 ◽  
Author(s):  
M. Latour ◽  
E. M. Green ◽  
G. Fontaine

We present the discovery of long-period, low-amplitude, g-mode pulsations in the intermediate He-rich hot subdwarf (sdOB) star Feige 46. So far, only one other He-enriched sdOB star (LS IV−14 ° 116) was known to exhibit such pulsations. From our ground-based light curves of Feige 46, we extracted five independent periodicities ranging from 2294 s to 3400 s. We fit our optical spectrum of the star with our grid of non-local thermodynamic equilibrium (NLTE) model atmospheres and derived the following atmospheric parameters: Teff = 36120 ± 230 K, log g = 5.93 ± 0.04, and log N(He)/N(H) = −0.32 ± 0.03 (formal fitting errors only). These parameters are very similar to those of LS IV−14 ° 116 and place Feige 46 well outside of the instability strip where the hydrogen-rich g-mode sdB pulsators are found. We used the Gaia parallax and proper motion of Feige 46 to perform a kinematic analysis of this star and found that it likely belongs to the Galactic halo population. This is most certainly an intriguing and interesting result given that LS IV−14 ° 116 is also a halo object. The mechanism responsible for the pulsations in these two peculiar objects remains unclear, but a possible scenario involves the ϵ-mechanism. Although they are the only two members in their class of variable stars, these pulsators appear to have more in common than just their pulsation properties.


1986 ◽  
Vol 7 ◽  
pp. 142-149
Author(s):  
Robert E. Stencel

AbstractNew observations of the long period eclipsing system Epsilon Aurigae are discussed, including optical and infrared photometry, ultraviolet spectrophotometry and optical polarization. Trends are noted in the light curves and compared to previous eclipses. Comments regarding interpretation are also provided.


2004 ◽  
Vol 191 ◽  
pp. 28-32 ◽  
Author(s):  
A. Eggenberger ◽  
J.-L. Halbwachs ◽  
S. Udry ◽  
M. Mayor

AbstractWe have undertaken a new investigation of the statistical properties of main-sequence binaries, which is a revision and extension of the Duquennoy & Mayor survey of solar-type stars. The analysis has been divided into two parts: the spectroscopic binaries with periods shorter than 10 years, and the long-period systems including visual binaries and common proper motion pairs. In this contribution we present preliminary results regarding the intrinsic mass ratio and period distributions of visual binaries. Our results are strongly limited by small-number statistics, but when combined with the ones found for the spectroscopic binaries, the following results are obtained: (i) the excess of equal-mass binaries, if still present, is less important for long-period systems than for the binaries with P < 50 days; (ii) the period distribution is inconsistent with a flat distribution.


2008 ◽  
Vol 4 (S253) ◽  
pp. 436-439 ◽  
Author(s):  
S. Raetz ◽  
M. Mugrauer ◽  
T. O. B. Schmidt ◽  
T. Roell ◽  
T. Eisenbeiss ◽  
...  

AbstractWe have started high precision photometric monitoring observations at the AIU Jena observatory in Großschwabhausen near Jena in fall 2006. We used a 25.4cm Cassegrain telescope equipped with a CCD-camera mounted piggyback on a 90cm telescope. To test the attainable photometric precision, we observed stars with known transiting planets. We could recover all planetary transits observed by us.We observed the parent star of the transiting planet TrES-2 over a longer period in Großschwabhausen. Between March and November 2007 seven different transits and almost a complete orbital period were analyzed. Overall, in 31 nights of observation 3423 exposures (in total 57.05h of observation) of the TrES-2 parent star were taken. Here, we present our methods and the resulting light curves. Using our observations we could improve the orbital parameters of the system.


2019 ◽  
Vol 627 ◽  
pp. A66 ◽  
Author(s):  
René Heller ◽  
Michael Hippke ◽  
Kai Rodenbeck

The extended Kepler mission (K2) has revealed more than 500 transiting planets in roughly 500 000 stellar light curves. All of these were found either with the box least-squares algorithm or by visual inspection. Here we use our new transit least-squares (TLS) algorithm to search for additional planets around all K2 stars that are currently known to host at least one planet. We discover and statistically validate 17 new planets with radii ranging from about 0.7 Earth radii (R⊕) to roughly 2.2 R⊕ and a median radius of 1.18 R⊕. EPIC 201497682.03, with a radius of 0.692+0.059−0.048, is the second smallest planet ever discovered with K2. The transit signatures of these 17 planets are typically 200 ppm deep (ranging from 100 ppm to 2000 ppm), and their orbital periods extend from about 0.7 d to 34 d with a median value of about 4 d. Fourteen of these 17 systems only had one known planet before, and they now join the growing number of multi-planet systems. Most stars in our sample have subsolar masses and radii. The small planetary radii in our sample are a direct result of the higher signal detection efficiency that TLS has compared to box-fitting algorithms in the shallow-transit regime. Our findings help in populating the period-radius diagram with small planets. Our discovery rate of about 3.7% within the group of previously known K2 systems suggests that TLS can find over 100 additional Earth-sized planets in the data of the Kepler primary mission.


2018 ◽  
Vol 611 ◽  
pp. A97 ◽  
Author(s):  
J. Pasquet-Itam ◽  
J. Pasquet

We have applied a convolutional neural network (CNN) to classify and detect quasars in the Sloan Digital Sky Survey Stripe 82 and also to predict the photometric redshifts of quasars. The network takes the variability of objects into account by converting light curves into images. The width of the images, noted w, corresponds to the five magnitudes ugriz and the height of the images, noted h, represents the date of the observation. The CNN provides good results since its precision is 0.988 for a recall of 0.90, compared to a precision of 0.985 for the same recall with a random forest classifier. Moreover 175 new quasar candidates are found with the CNN considering a fixed recall of 0.97. The combination of probabilities given by the CNN and the random forest makes good performance even better with a precision of 0.99 for a recall of 0.90. For the redshift predictions, the CNN presents excellent results which are higher than those obtained with a feature extraction step and different classifiers (a K-nearest-neighbors, a support vector machine, a random forest and a Gaussian process classifier). Indeed, the accuracy of the CNN within |Δz| < 0.1 can reach 78.09%, within |Δz| < 0.2 reaches 86.15%, within |Δz| < 0.3 reaches 91.2% and the value of root mean square (rms) is 0.359. The performance of the KNN decreases for the three |Δz| regions, since within the accuracy of |Δz| < 0.1, |Δz| < 0.2, and |Δz| < 0.3 is 73.72%, 82.46%, and 90.09% respectively, and the value of rms amounts to 0.395. So the CNN successfully reduces the dispersion and the catastrophic redshifts of quasars. This new method is very promising for the future of big databases such as the Large Synoptic Survey Telescope.


Sign in / Sign up

Export Citation Format

Share Document