scholarly journals Failed and delayed protostellar outflows with high-mass accretion rates

2020 ◽  
Vol 499 (3) ◽  
pp. 4490-4514
Author(s):  
Masahiro N Machida ◽  
Takashi Hosokawa

ABSTRACT The evolution of protostellar outflows is investigated under different mass accretion rates in the range ∼10−5–$10^{-2}\, {\rm M}_\odot$ yr−1 with 3D magnetohydrodynamic simulations. A powerful outflow always appears in strongly magnetized clouds with $B_0 \gtrsim B_{\rm 0, cr}\, =10^{-4} (M_{\rm cl}/100\, {\rm M}_\odot)$ G, where Mcl is the cloud mass. When a cloud has a weaker magnetic field, the outflow does not evolve promptly with a high-mass accretion rate. In some cases with moderate magnetic fields B0 slightly smaller than B0, cr, the outflow growth is suppressed or delayed until the infalling envelope dissipates and the ram pressure around the protostellar system is significantly reduced. In such an environment, the outflow begins to grow and reaches a large distance only during the late accretion phase. On the other hand, the protostellar outflow fails to evolve and is finally collapsed by the strong ram pressure when a massive (≳ 100 M⊙) initial cloud is weakly magnetized with B0 ≲ 100 μG. The failed outflow creates a toroidal structure that is supported by magnetic pressure and encloses the protostar and disc system. Our results indicate that high-mass stars form only in strongly magnetized clouds, if all high-mass protostars possess a clear outflow. If we would observe either very weak or no outflow around evolved protostars, it means that strong magnetic fields are not necessarily required for high-mass star formation. In any case, we can constrain the high-mass star formation process from observations of outflows.

2019 ◽  
Vol 632 ◽  
pp. A50 ◽  
Author(s):  
A. Ahmadi ◽  
R. Kuiper ◽  
H. Beuther

Context. In the disc-mediated accretion scenario for the formation of the most massive stars, high densities and high accretion rates could induce gravitational instabilities in the disc, forcing it to fragment and produce companion objects. Aims. We investigate the effects of inclination and spatial resolution on the observable kinematics and stability of discs in high-mass star formation. Methods. We studied a high-resolution 3D radiation-hydrodynamic simulation that leads to the fragmentation of a massive disc. Using RADMC-3D we produced 1.3 mm continuum and CH3CN line cubes at different inclinations. The model was set to different distances, and synthetic observations were created for ALMA at ~80 mas resolution and NOEMA at ~0.4′′. Results. The synthetic ALMA observations resolve all fragments and their kinematics well. The synthetic NOEMA observations at 800 pc with linear resolution of ~300 au are able to resolve the fragments, while at 2000 pc with linear resolution of ~800 au only a single structure slightly elongated towards the brightest fragment is observed. The position–velocity (PV) plots show the differential rotation of material best in the edge-on views. A discontinuity is seen at a radius of ~250 au, corresponding to the position of the centrifugal barrier. As the observations become less resolved, the inner high-velocity components of the disc become blended with the envelope and the PV plots resemble rigid-body-like rotation. Protostellar mass estimates from PV plots of poorly resolved observations are therefore overestimated. We fit the emission of CH3CN (12K−11K) lines and produce maps of gas temperature with values in the range of 100–300 K. Studying the Toomre stability of the discs, we find low Q values below the critical value for stability against gravitational collapse at the positions of the fragments and in the arms connecting the fragments for the resolved observations. For the poorly resolved observations we find low Q values in the outskirts of the disc. Therefore, although we could not resolve any of the fragments, we are able to predict that the disc is unstable and fragmenting. This conclusion is valid regardless of our knowledge about the inclination of the disc. Conclusions. These synthetic observations reveal the potential and limitations of studying discs in high-mass star formation with current (millimetre) interferometers. While the extremely high spatial resolution of ALMA reveals objects in extraordinary detail, rotational structures and instabilities within accretion discs can also be identified in poorly resolved observations.


2009 ◽  
Vol 695 (2) ◽  
pp. 1399-1412 ◽  
Author(s):  
Ya-Wen Tang ◽  
Paul T. P. Ho ◽  
Josep Miquel Girart ◽  
Ramprasad Rao ◽  
Patrick Koch ◽  
...  

2018 ◽  
Vol 614 ◽  
pp. A64 ◽  
Author(s):  
H. Beuther ◽  
J. D. Soler ◽  
W. Vlemmings ◽  
H. Linz ◽  
Th. Henning ◽  
...  

Context. The importance of magnetic fields at the onset of star formation related to the early fragmentation and collapse processes is largely unexplored today. Aims. We want to understand the magnetic field properties at the earliest evolutionary stages of high-mass star formation. Methods. The Atacama Large Millimeter Array is used at 1.3 mm wavelength in full polarization mode to study the polarized emission, and, using this, the magnetic field morphologies and strengths of the high-mass starless region IRDC 18310-4. Results. Polarized emission is clearly detected in four sub-cores of the region; in general it shows a smooth distribution, also along elongated cores. Estimating the magnetic field strength via the Davis-Chandrasekhar-Fermi method and following a structure function analysis, we find comparably large magnetic field strengths between ~0.3–5.3 mG. Comparing the data to spectral line observations, the turbulent-to-magnetic energy ratio is low, indicating that turbulence does not significantly contribute to the stability of the gas clump. A mass-to-flux ratio around the critical value 1.0 – depending on column density – indicates that the region starts to collapse, which is consistent with the previous spectral line analysis of the region. Conclusions. While this high-mass region is collapsing and thus at the verge of star formation, the high magnetic field values and the smooth spatial structure indicate that the magnetic field is important for the fragmentation and collapse process. This single case study can only be the starting point for larger sample studies of magnetic fields at the onset of star formation.


2017 ◽  
Vol 13 (S336) ◽  
pp. 299-300 ◽  
Author(s):  
J. Yuan ◽  
J.-Z. Li ◽  
Y. Wu

AbstractG22 is a hub-filament system composed of four supercritical filaments. Velocity gradients are detected along three filaments. A total mass infall rate of 700 M⊙ Myr−1 would double the hub mass in about three free-fall times. The most massive clump C1 would be in global collapse with an infall velocity of 0.26 km s−1 and a mass infall rate of 5 × 10−4M⊙ yr−1, which is supported by the prevalent HCO+ (3-2) and 13CO (3-2) blue profiles. A hot molecular core (SMA1) was revealed in C1. At the SMA1 center, there is a massive protostar (MIR1) driving multipolar outflows which are associated with clusters of class I methanol masers. MIR1 may be still growing with an accretion rate of 7 × 10−5M⊙ yr−1. Filamentary flows, clump-scale collapse, core-scale accretion coexist in G22, suggesting that high-mass starless cores may not be prerequisite to form high-mass stars. In the high-mass star formation process, the central protostar, the core, and the clump can grow in mass simultaneously.


2011 ◽  
Vol 729 (1) ◽  
pp. 72 ◽  
Author(s):  
Thomas Peters ◽  
Robi Banerjee ◽  
Ralf S. Klessen ◽  
Mordecai-Mark Mac Low

2021 ◽  
Vol 923 (2) ◽  
pp. 147
Author(s):  
Kaho Morii ◽  
Patricio Sanhueza ◽  
Fumitaka Nakamura ◽  
James M. Jackson ◽  
Shanghuo Li ◽  
...  

Abstract With a mass of ∼1000 M ⊙ and a surface density of ∼0.5 g cm−2, G023.477+0.114, also known as IRDC 18310-4, is an infrared dark cloud (IRDC) that has the potential to form high-mass stars and has been recognized as a promising prestellar clump candidate. To characterize the early stages of high-mass star formation, we have observed G023.477+0.114 as part of the Atacama Large Millimeter/submillimeter Array (ALMA) Survey of 70 μm Dark High-mass Clumps in Early Stages. We have conducted ∼1.″2 resolution observations with ALMA at 1.3 mm in dust continuum and molecular line emission. We have identified 11 cores, whose masses range from 1.1 to 19.0 M ⊙. Ignoring magnetic fields, the virial parameters of the cores are below unity, implying that the cores are gravitationally bound. However, when magnetic fields are included, the prestellar cores are close to virial equilibrium, while the protostellar cores remain sub-virialized. Star formation activity has already started in this clump. Four collimated outflows are detected in CO and SiO. H2CO and CH3OH emission coincide with the high-velocity components seen in the CO and SiO emission. The outflows are randomly oriented for the natal filament and the magnetic field. The position-velocity diagrams suggest that episodic mass ejection has already begun even in this very early phase of protostellar formation. The masses of the identified cores are comparable to the expected maximum stellar mass that this IRDC could form (8–19 M ⊙). We explore two possibilities on how IRDC G023.477+0.114 could eventually form high-mass stars in the context of theoretical scenarios.


2018 ◽  
Vol 14 (A30) ◽  
pp. 111-112
Author(s):  
Daria Dall’Olio ◽  
W. H. T. Vlemmings ◽  
M. V. Persson

AbstractMagnetic fields play a significant role during star formation processes, hindering the fragmentation and the collapse of the parental cloud, and affecting the accretion mechanisms and feedback phenomena. However, several questions still need to be addressed to clarify the importance of magnetic fields at the onset of high-mass star formation, such as how strong they are and at what evolutionary stage and spatial scales their action becomes relevant. Furthermore, the magnetic field parameters are still poorly constrained especially at small scales, i.e. few astronomical units from the central object, where the accretion disc and the base of the outflow are located. Thus we need to probe magnetic fields at different scales, at different evolutionary steps and possibly with different tracers. We show that the magnetic field morphology around high-mass protostars can be successfully traced at different scales by observing maser and dust polarised emission. A confirmation that they are effective tools is indeed provided by our recent results from 6.7 GHz MERLIN observations of the massive protostar IRAS 18089-1732, where we find that the small-scale magnetic field probed by methanol masers is consistent with the large-scale magnetic field probed by dust (Dall’Olio et al. 2017 A&A 607, A111). Moreover we present results obtained from our ALMA Band 7 polarisation observations of G9.62+0.20, which is a massive star-forming region with a sequence of cores at different evolutionary stages (Dall’Olio et al. submitted to A&A). In this region we resolve several protostellar cores embedded in a bright and dusty filamentary structure. The magnetic field morphology and strength in different cores is related to the evolutionary sequence of the star formation process which is occurring across the filament.


2021 ◽  
Author(s):  
Stefano Pezzuto

Abstract In this paper I introduce and discuss an alternative approach to the relation between accretion luminosity, Lacc, and mass accretion rate, ˙M : instead of the universally adopted Lacc = GM ˙M/R, I propose the dynamical definition Lacc = v2f˙M/2 where vf is the final velocity of the infalling matter at the surface of the accreting object of mass M and radius R. Both definitions are based on the energy conservation, but while the former assumes that matter is in free fall, the latter is valid always. By adopting the alternative form for Lacc, I show that the Eddington luminosity Led, when the outward radiation pressure wins on gravity, is never produced with a finite ˙M. Instead, Led is a limit asymptotically reached when ˙M → ¥. My argument is very simple, so I felt the need to find a possible explanation to why no one arrived to this conclusion before. To this aim, I give a brief presentation of the history of accretion, from the pioneer work of Hoyle and collaborators until the ’60s of last century, to show how the perception of the role of the radiation pressure in accretion evolved. I give also some practical applications of the formulae I derived, in the case of high-mass star formation and of the growth of super massive black holes. The study of these two processes, already complex per se, becomes more difficult to solve because of the existence of a limiting ˙M, named Eddington mass accretion rate or ˙Med, that it is supposed to generate a luminosity equal to Led, making it impossible to accrete at rate ˙M > ˙Med. Accretion rates higher than ˙Med are however necessary, as theory and observations show. My definition of Lacc takes naturally into account the work done by radiation pressure to slow down the infalling matter: as a consequence, Lacc does not increase linearly with ˙M and Led is only an asymptotic value.


Sign in / Sign up

Export Citation Format

Share Document