Systematic velocity drifts of methanol masers associated with G9.62+0.20E

2020 ◽  
Vol 500 (3) ◽  
pp. 3425-3437
Author(s):  
G C MacLeod ◽  
J O Chibueze ◽  
A Sanna ◽  
J D Paulsen ◽  
M Houde ◽  
...  

ABSTRACT The source G9.62+0.20E surprises again! Several of the associated 6.7- and 12.2-GHz methanol masers are experiencing contemporaneous and systematic velocity drifts. Both 6.7- and 12.2-GHz methanol features blueward of v = +1.2 km s−1 are blue shifting while those redward are red shifting. A best-fitting rotating Keplerian disc with a central mass of ∼12 M⊙, radii Rinner = 5 au and Router = 5000 au, and at an inclination angle of 22○ either precessing and/or experiencing infall explains these systematic velocity drifts. Also three more distinct 6.7-GHz methanol maser features are found to vary periodically; two very weak and one obviously periodic only after 2003. Evidence of periodicity is seen as early as 1992. Time lags are confirmed but the cause is unclear. It is possible this source will surprise again.

2021 ◽  
Vol 502 (4) ◽  
pp. 5658-5667
Author(s):  
G C MacLeod ◽  
Derck P Smits ◽  
J A Green ◽  
S P van den Heever

ABSTRACT The first confirmed periodically varying 6.031 and 6.035 GHz hydroxyl masers are reported here. They vary contemporaneously with the 6.7 GHz methanol masers in G323.459–0.079. The 1.665 GHz hydroxyl and 12.2  GHz methanol masers associated with G323.459–0.079 are also periodic. Evidence for periodicity is seen in all features in all transitions save a single 1.665 GHz hydroxyl maser feature. Historical excited-state hydroxyl maser observations set a stricter upper limit on the epoch in which a significant accretion event occurred. The associated burst in 6.7 GHz methanol maser activity has subsided significantly while the hydroxyl transitions are brightening possibly the result of changing physical conditions in the masing cloudlets. Time lags in methanol are confirmed and may be the result of the periodic flaring propagating outward from the central region of maser activity. A possible magnetic field reversal occurred during the accretion event.


2012 ◽  
Vol 8 (S289) ◽  
pp. 410-413
Author(s):  
Naoko Matsumoto ◽  
Mareki Honma ◽  

AbstractTo search for kinematic evidence of the existence of the Galactic bar, we observed 10 methanol maser sources at the near end of the bar with VERA (VLBI Exploration of Radio Astrometry). From these observations, we obtained absolute proper motions of eight sources based on the phase-referencing technique. We compared the motions with the predictions of three simple models in a 3D plane. This comparison showed that a non-flat circular rotation model and a dynamical model including a bar potential reproduce the observed data better than a flat rotation model. In addition, the bar model suggests that the inclination angle of the Galactic bar is around 35°, which is consistent with previous studies.


2017 ◽  
Vol 13 (S336) ◽  
pp. 105-108
Author(s):  
Tiege P. McCarthy ◽  
Simon P. Ellingsen ◽  
Xi Chen ◽  
Shari L. Breen ◽  
Maxim A. Voronkov ◽  
...  

AbstractWe have detected maser emission from the 36.2 GHz (4−1 → 30E) methanol transition towards NGC 4945. This emission has been observed in two separate epochs and is approximately five orders of magnitude more luminous than typical emission from this transition within our Galaxy. NGC 4945 is only the fourth extragalactic source observed hosting class I methanol maser emission. Extragalactic class I methanol masers do not appear to be simply highly-luminous variants of their galactic counterparts and instead appear to trace large-scale regions where low-velocity shocks are present in molecular gas.


2019 ◽  
Vol 15 (S356) ◽  
pp. 393-394
Author(s):  
Martin M. Mutie ◽  
Paul Baki ◽  
James O. Chibueze ◽  
Khadija El Bouchefry

AbstractWe report the results of 14 years of monitoring of G188.95+0.89 periodic 6.7 GHz methanol masers using the Hartebeesthoek 26-m radio telescope. G188.95+0.89 (S252, AFGL5180) is a radio-quiet methanol maser site that is often interpreted as precursors of ultra-compact HII regions or massive protostar sites. At least five bright spectral components were identified. The maser feature at 11.36 km s-1 was found to experience an exponential decay during the monitoring period. The millimetre continuum reveals two cores associated with the source.


2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


2020 ◽  
Vol 493 (2) ◽  
pp. 2015-2041 ◽  
Author(s):  
B M Jones ◽  
G A Fuller ◽  
S L Breen ◽  
A Avison ◽  
J A Green ◽  
...  

ABSTRACT The Methanol MultiBeam survey (MMB) provides the most complete sample of Galactic massive young stellar objects (MYSOs) hosting 6.7 GHz class II methanol masers. We characterize the properties of these maser sources using dust emission detected by the Herschel Infrared Galactic Plane Survey (Hi-GAL) to assess their evolutionary state. Associating 731 (73 per cent) of MMB sources with compact emission at four Hi-GAL wavelengths, we derive clump properties and define the requirements of an MYSO to host a 6.7 GHz maser. The median far-infrared (FIR) mass and luminosity are 630 M⊙ and 2500 L⊙ for sources on the near side of Galactic centre and 3200 M⊙ and 10000 L⊙ for more distant sources. The median luminosity-to-mass ratio is similar for both at ∼4.2 L⊙  M⊙−1. We identify an apparent minimum 70 μm luminosity required to sustain a methanol maser of a given luminosity (with $L_{70} \propto L_{6.7}\, ^{0.6}$). The maser host clumps have higher mass and higher FIR luminosities than the general Galactic population of protostellar MYSOs. Using principal component analysis, we find 896 protostellar clumps satisfy the requirements to host a methanol maser but lack a detection in the MMB. Finding a 70 μm flux density deficiency in these objects, we favour the scenario in which these objects are evolved beyond the age where a luminous 6.7 GHz maser can be sustained. Finally, segregation by association with secondary maser species identifies evolutionary differences within the population of 6.7GHz sources.


2002 ◽  
Vol 206 ◽  
pp. 143-146
Author(s):  
Marian Szymczak ◽  
Andrzej J. Kus ◽  
Grzegorz Hrynek

A blind survey for 6.7GHz methanol maser emission has been made with the 32 m Toruń radio telescope. The survey consists of 4,800 spectra on an equilateral triangular grid pattern with each grid point separated by 4.4 covering a field of ∼21 deg2 at galactic longitudes 20° to 40° and galactic latitudes ±0°52. The average sensitivity was 1.6 Jy and the spectral resolution was 0.04kms−1. A total of 99 sources were detected, 28 of which were not found during previous searches of IRAS-selected ultracompact HII regions. The peak flux density of new detections is usually lower than 30 Jy. About half of the methanol masers have no IRAS counterparts within a radius of 2. The nature of these sources is unclear.


2017 ◽  
Vol 13 (S336) ◽  
pp. 277-278
Author(s):  
Artis Aberfelds ◽  
Ivar Shmeld ◽  
Karlis Berzins

AbstractThe first long-term maser (mainly methanol) monitoring program is under way with the radio telescopes of Ventspils International Radio Astronomy Center. The first activity of this program was to develop an observations methodology and data registration and reduction software for the Ventspils telescopes. The developed routines are to be used for maser variability monitoring, investigating short bursts of intensity and a search for new, previously unknown, maser sources. Currently the program consists of 41 methanol masers observed at 6.7 GHz, while new ones are periodically added. The maser sources are observed at 3 – 5 day intervals. It was found that most the sources display a significant level of variability with time, ranging from a few days, up to several months and, perhaps, years. In addition to non-varying masers, several types of maser variability behavior were observed, including: monotonic increases or decreases, un-periodical, quasi-periodic and periodic variations.


1998 ◽  
Vol 164 ◽  
pp. 377-378
Author(s):  
R. P. Norris ◽  
C. J. Phillips ◽  
S. P. Ellingsen

AbstractSince the discovery of the 12.2 and 6.7 GHz methanol maser lines, these masers have been studied in great detail. Even in the earliest studies, it appeared that in some fraction of the sources, the maser spots were arranged in lines. This contrasts with the well-studied OH and water masers, in which the masers tended to be clustered almost randomly around a compact H ɪɪ region. Here I describe recent work to investigate the hypothesis that these lines represent edge-on circumstellar disks.


2017 ◽  
Vol 13 (S336) ◽  
pp. 301-302
Author(s):  
D. J. van der Walt ◽  
J.-M. Morgan ◽  
J. O. Chibueze ◽  
Q. Zhang

AbstractWe present the results of sub-millimetre observations on three periodic methanol maser sources. Our results indicate that there are geometric differences between some periodic methanol masers which have different variability profiles.


Sign in / Sign up

Export Citation Format

Share Document