Synchronized periodic maser flares of multiple OH and CH3OH lines in G323.459–0.079

2021 ◽  
Vol 502 (4) ◽  
pp. 5658-5667
Author(s):  
G C MacLeod ◽  
Derck P Smits ◽  
J A Green ◽  
S P van den Heever

ABSTRACT The first confirmed periodically varying 6.031 and 6.035 GHz hydroxyl masers are reported here. They vary contemporaneously with the 6.7 GHz methanol masers in G323.459–0.079. The 1.665 GHz hydroxyl and 12.2  GHz methanol masers associated with G323.459–0.079 are also periodic. Evidence for periodicity is seen in all features in all transitions save a single 1.665 GHz hydroxyl maser feature. Historical excited-state hydroxyl maser observations set a stricter upper limit on the epoch in which a significant accretion event occurred. The associated burst in 6.7 GHz methanol maser activity has subsided significantly while the hydroxyl transitions are brightening possibly the result of changing physical conditions in the masing cloudlets. Time lags in methanol are confirmed and may be the result of the periodic flaring propagating outward from the central region of maser activity. A possible magnetic field reversal occurred during the accretion event.

2000 ◽  
Vol 179 ◽  
pp. 193-196
Author(s):  
V. I. Makarov ◽  
A. G. Tlatov

AbstractA possible scenario of polar magnetic field reversal of the Sun during the Maunder Minimum (1645–1715) is discussed using data of magnetic field reversals of the Sun for 1880–1991 and the14Ccontent variations in the bi-annual rings of the pine-trees in 1600–1730 yrs.


2007 ◽  
Vol 3 (S242) ◽  
pp. 234-235
Author(s):  
T. Umemoto ◽  
N. Mochizuki ◽  
K. M. Shibata ◽  
D.-G. Roh ◽  
H.-S. Chung

AbstractWe present the results of a mm wavelength methanol maser survey towards massive star forming regions. We have carried out Class II methanol maser observations at 86.6 GHz, 86.9 GHz and 107.0 GHz, simultaneously, using the Nobeyama 45 m telescope. We selected 108 6.7 GHz methanol maser sources with declinations above −25 degrees and fluxes above 20 Jy. The detection limit of maser observations was ~3 Jy. Of the 93 sources surveyed so far, we detected methanol emission in 25 sources (27%) and “maser” emission in nine sources (10%), of which thre “maser” sources are new detections. The detection rate for maser emission is about half that of a survey of the southern sky (Caswell et al. 2000). There is a correlation between the maser flux of 107 GHz and 6.7 GHz/12 GHz emission, but no correlation with the “thermal” (non maser) emission. From results of other molecular line observations, we found that the sources with methanol emission show higher gas temperatures and twice the detection rate of SiO emission. This may suggest that dust evaporation and destruction by shock are responsible for the high abundance of methanol molecules, one of the required physical conditions for maser emission.


2020 ◽  
Vol 500 (3) ◽  
pp. 3425-3437
Author(s):  
G C MacLeod ◽  
J O Chibueze ◽  
A Sanna ◽  
J D Paulsen ◽  
M Houde ◽  
...  

ABSTRACT The source G9.62+0.20E surprises again! Several of the associated 6.7- and 12.2-GHz methanol masers are experiencing contemporaneous and systematic velocity drifts. Both 6.7- and 12.2-GHz methanol features blueward of v = +1.2 km s−1 are blue shifting while those redward are red shifting. A best-fitting rotating Keplerian disc with a central mass of ∼12 M⊙, radii Rinner = 5 au and Router = 5000 au, and at an inclination angle of 22○ either precessing and/or experiencing infall explains these systematic velocity drifts. Also three more distinct 6.7-GHz methanol maser features are found to vary periodically; two very weak and one obviously periodic only after 2003. Evidence of periodicity is seen as early as 1992. Time lags are confirmed but the cause is unclear. It is possible this source will surprise again.


1998 ◽  
Vol 164 ◽  
pp. 375-376
Author(s):  
S. P. Ellingsen ◽  
P.M. McCulloch ◽  
P. J. Diamond ◽  
R. P. Norris

AbstractWe have used the VLBA to image the 12.2 GHz (20-3−1 E) masing transition of methanol toward the massive star formation region G345.01+1.79. The maser spots are distributed in a curved structure with a near monotonic velocity distribution along the curve. The cluster of maser emission covers an area of approximately 200 milli-arcseconds in right ascension and 70 milli-arcseconds in declination.Comparison of the positions of the 12.2 GHz methanol maser spots in G345.01+1.79 as determined from the 1995 VLBA observations with 1988 Parkes-Tidbinbilla Interferometer observations shows that the relative positions of the maser spots detected in both epochs has changed by less than 5 milli-arcseconds during that interval. Assuming a distance of 2.3 kpc to G345.01+1.79 implies an upper limit on the relative tangential velocities of the maser spots of 7 km s−1.


2020 ◽  
Vol 58 (4) ◽  
pp. 227-233
Author(s):  
O. O. Tsareva ◽  
L. M. Zelenyi ◽  
Kh. V. Malova ◽  
V. Yu. Popov

2007 ◽  
Vol 3 (S242) ◽  
pp. 162-163
Author(s):  
B. Hutawarakorn Kramer ◽  
J. L. Caswell ◽  
A. Sukom ◽  
J. E. Reynolds

AbstractOH masers are sensitive probes of the kinematics, physical conditions, and magnetic fields in star-forming regions. The maser site OH 330.953-0.182 has been studied using the Long Baseline Array of the Australia Telescope National Facility. Simultaneous observations of the 1665- and 1667-MHz hydroxyl ground-state transitions yield a series of maps at velocity spacing 0.09kms−1, in both right- and left-hand circular polarization, with tenth-arcsec spatial resolution. Several clusters of maser spots have been detected within a five-arcsec region. Eight Zeeman pairs were found, and in one case, at 1665 MHz, there is a nearby 1667-MHz pair indicating a similar value of magnetic field and velocity. Over the whole site, all magnetic field estimates are toward us (negative), and range from -3.7 to -5.8 mG. We also compared the morphology and kinematics of the 1665- and 1667-MHz maser spots with those from the excited state of OH at 6035 MHz and from methanol at 6668 MHz.


Author(s):  
A. Chipman ◽  
S. P. Ellingsen ◽  
A. M. Sobolev ◽  
D. M. Cragg

AbstractWe have used the Australia Telescope Compact Array to search for a number of centimetre wavelength methanol transitions which are predicted to show weak maser emission towards star formation regions. Sensitive, high spatial, and spectral resolution observations towards four high-mass star formation regions which show emission in a large number of class II methanol maser transitions did not result in any detections. From these observations, we are able to place an upper limit of ≲ 1300 K on the brightness temperature of any emission from the 31A+–31A−, 17−2–18−3 E (vt = 1), 124–133 A−, 124–133 A+, and 41A+–41A− transitions of methanol in these sources on angular scales of 2 arcsec. This upper limit is consistent with current models for class II methanol masers in high-mass star formation regions and better constraints than those provided here will likely require observations with next-generation radio telescopes.


2012 ◽  
Vol 8 (S292) ◽  
pp. 42-42
Author(s):  
Cong-Gui Gan ◽  
Xi Chen ◽  
Zhi-Qiang Shen

AbstractWe performed polarization sensitive VLBI observations of 6.7 GHz methanol masers toward high-mass young stellar objects with clear outflow seen from Spitzer IRAC images in the 4.5 μm band (i.e. EGOs, see Cyganowski et al. 2008) with the EVN to investigate the birthplace of the masers. By comparing direction of the major axis of methanol maser distributions with directions of higher resolution outflow and magnetic field vector, we suggest that the methanol masers toward source G28.83-0.25 may arise from surrounding disk.


Sign in / Sign up

Export Citation Format

Share Document