scholarly journals Creation/destruction of ultra-wide binaries in tidal streams

Author(s):  
Jorge Peñarrubia

Abstract This paper uses statistical and N-body methods to explore a new mechanism to form binary stars with extremely large separations (≳ 0.1 pc), whose origin is poorly understood. Here, ultra-wide binaries arise via chance entrapment of unrelated stars in tidal streams of disrupting clusters. It is shown that (i) the formation of ultra-wide binaries is not limited to the lifetime of a cluster, but continues after the progenitor is fully disrupted, (ii) the formation rate is proportional to the local phase-space density of the tidal tails, (iii) the semimajor axis distribution scales as p(a)da ∼ a1/2da at a ≪ D, where D is the mean interstellar distance, and (vi) the eccentricity distribution is close to thermal, p(e)de = 2ede. Owing to their low binding energies, ultra-wide binaries can be disrupted by both the smooth tidal field and passing substructures. The time-scale on which tidal fluctuations dominate over the mean field is inversely proportional to the local density of compact substructures. Monte-Carlo experiments show that binaries subject to tidal evaporation follow p(a)da ∼ a−1da at a ≳ apeak, known as Öpik’s law, with a peak semi-major axis that contracts with time as apeak ∼ t−3/4. In contrast, a smooth Galactic potential introduces a sharp truncation at the tidal radius, p(a) ∼ 0 at a ≳ rt. The scaling relations of young clusters suggest that most ultra-wide binaries arise from the disruption of low-mass systems. Streams of globular clusters may be the birthplace of hundreds of ultra-wide binaries, making them ideal laboratories to probe clumpiness in the Galactic halo.

Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 183
Author(s):  
Yongjie Liu ◽  
Yu Jiang ◽  
Hengnian Li ◽  
Hui Zhang

This paper intends to show some special types of orbits around Jupiter based on the mean element theory, including stationary orbits, sun-synchronous orbits, orbits at the critical inclination, and repeating ground track orbits. A gravity model concerning only the perturbations of J2 and J4 terms is used here. Compared with special orbits around the Earth, the orbit dynamics differ greatly: (1) There do not exist longitude drifts on stationary orbits due to non-spherical gravity since only J2 and J4 terms are taken into account in the gravity model. All points on stationary orbits are degenerate equilibrium points. Moreover, the satellite will oscillate in the radial and North-South directions after a sufficiently small perturbation of stationary orbits. (2) The inclinations of sun-synchronous orbits are always bigger than 90 degrees, but smaller than those for satellites around the Earth. (3) The critical inclinations are no-longer independent of the semi-major axis and eccentricity of the orbits. The results show that if the eccentricity is small, the critical inclinations will decrease as the altitudes of orbits increase; if the eccentricity is larger, the critical inclinations will increase as the altitudes of orbits increase. (4) The inclinations of repeating ground track orbits are monotonically increasing rapidly with respect to the altitudes of orbits.


1983 ◽  
Vol 74 ◽  
pp. 3-17
Author(s):  
J. Kovalevsky

AbstractThis paper deals with the long term evolution of the motion of the Moon or any other natural satellite under the combined influence of gravitational forces (lunar theory) and the tidal effects. We study the equations that are left when all the periodic non-resonant terms are eliminated. They describe the evolution of the-mean elements of the Moon. Only the equations involving the variation of the semi-major axis are considered here. Simplified equations, preserving the Hamiltonian form of the lunar theory are first considered and solved. It is shown that librations exist only for those terms which have a coefficient in the lunar theory larger than a quantity A which is function of the magnitude of the tidal effects. The solution of the general case can be derived from a Hamiltonian solution by a method of variation of constants. The crossing of a libration region causes a retardation in the increase of the semi-major axis. These results are confirmed by numerical integration and orders of magnitude of this retardation are given.


1996 ◽  
Vol 174 ◽  
pp. 383-383
Author(s):  
Frederic A. Rasio ◽  
Douglas C. Heggie

Low-mass binary millisecond pulsars are born with very small orbital eccentricities, typically of order ei ∼ 10−6−10−3. In globular clusters, however, higher eccentricities ef ≫ ei can be induced by dynamical interactions with passing stars. Using both analytical perturbation calculations and numerical integrations, we have shown (Heggie & Rasio 1996) that the cross section for this process is much larger than previously estimated. This is because, even for initially circular binaries, the induced eccentricity ef for an encounter with pericentre separation rp beyond a few times the binary semi-major axis a declines only as a power-law, ef ∝ (rp/a)−5/2, and not as an exponential. We find that all currently known low-mass binary millisecond pulsars in globular clusters must have been affected by interactions, with their current eccentricities being at least an order of magnitude larger than at birth (Rasio & Heggie 1995).


2019 ◽  
Vol 623 ◽  
pp. A1 ◽  
Author(s):  
E. Iodice ◽  
M. Spavone ◽  
M. Capaccioli ◽  
R. F. Peletier ◽  
G. van de Ven ◽  
...  

Context. This paper is based on the multi-band (ugri) Fornax Deep Survey (FDS) with the VLT Survey Telescope (VST). We study bright early-type galaxies (mB ≤ 15 mag) in the 9 square degrees around the core of the Fornax cluster, which covers the virial radius (Rvir  ∼ 0.7 Mpc). Aims. The main goal of the present work is to provide an analysis of the light distribution for all galaxies out to unprecedented limits (in radius and surface brightness) and to release the main products resulting from this analysis in all FDS bands. We give an initial comprehensive view of the galaxy structure and evolution as a function of the cluster environment. Methods. From the isophote fit, we derived the azimuthally averaged surface brightness profiles, the position angle, and ellipticity profiles as a function of the semi-major axis. In each band, we derived the total magnitudes, effective radii, integrated colours, and stellar mass-to-light ratios. Results. The long integration times, the arcsec-level angular resolution of OmegaCam at VST, and the large covered area of FDS allow us to map the light and colour distributions out to large galactocentric distances (up to about 10−15 Re) and surface brightness levels beyond μr = 27 mag arcsec−2 (μB ≥ 28 mag arcsec−2). Therefore, the new FDS data allow us to explore in great detail the morphology and structure of cluster galaxies out to the region of the stellar halo. The analysis presented in this paper allows us to study how the structure of galaxies and the stellar population content vary with the distance from the cluster centre. In addition to the intra-cluster features detected in previous FDS works, we found a new faint filament between FCC 143 and FCC 147, suggesting an ongoing interaction. Conclusions. The observations suggest that the Fornax cluster is not completely relaxed inside the virial radius. The bulk of the gravitational interactions between galaxies happens in the W-NW core region of the cluster, where most of the bright early-type galaxies are located and where the intra-cluster baryons (diffuse light and globular clusters) are found. We suggest that the W-NW sub-clump of galaxies results from an infalling group onto the cluster, which has modified the structure of the galaxy outskirts (making asymmetric stellar halos) and has produced the intra-cluster baryons (ICL and GCs), concentrated in this region of the cluster.


2007 ◽  
Vol 3 (S246) ◽  
pp. 121-130
Author(s):  
Douglas C. Heggie ◽  
Mirek Giersz

AbstractAstronomers have constructed models of globular clusters for over 100 years. These models mainly fall into two categories: (i) static models, such as King's model and its variants, and (ii) evolutionary models. Most attention has been given to static models, which are used to estimate mass-to-light ratios and mass segregation, and to combine data from proper motions and radial velocities. Evolutionary models have been developed for a few objects using the gaseous model, the Fokker-Planck model, Monte Carlo models and N-body models. These models have had a significant role in the search for massive black holes in globular clusters, for example.In this presentation the problems associated with these various techniques will be summarised, and then we shall describe new work with Giersz's Monte Carlo code, which has been enhanced recently to include the stellar evolution of single and binary stars. We describe in particular recent attempts to model the nearby globular cluster M4, including predictions on the spatial distribution of binary stars and their semi-major axis distribution, to illustrate the effects of about 12 Gyr of dynamical evolution. We also discuss work on an approximate way of predicting the “initial” conditions for such modelling.


1998 ◽  
Vol 11 (1) ◽  
pp. 158-162
Author(s):  
P. Bretagnon

In this paper, I give the present state of the analytical planetary theories by describing the general theories and the secular variation theories, the variations of the ecliptic with respect to the ecliptic J2000, the utilization of the analytical planetary theories in the calculation of the precession-nutation of the equator and in the calculation of the expressions of transformation between the barycentric and geocentric reference systems. At last, I describe the construction of new planetary theories undertaken at the Bureau des longitudes. The analytical planetary theories arise in two forms: the general theories give, with a low accuracy, the variations of the elements of the planets over several million years; the secular variation theories reach a high accuracy over time spans of a few thousands of years. In all these solutions, the motion of the planets is represented with 6 elements: a, the semi major axis, λ, the mean longitude and the variables k = e cos ϖ, h = e sin ϖ, q = sin ½ cos Ω, p = sin ½ sin Ω where e represents the eccentricity of the orbit, w the longitude of the perihelion, i the inclination of the orbit about the ecliptic J2000 and Ω the longitude of the node.


1974 ◽  
Vol 22 ◽  
pp. 269-281 ◽  
Author(s):  
B. A. Lindblad

AbstractThe orbital characteristics of precisely reduced photographic meteors were studied. Most photographic meteors move in short period, direct orbits with orbital periods inbetween those of Jupiter and Mars. Practically no meteors have (Orbital periods coincident with those of the planets Jupiter, Mars and Earth.A search among all precisely reduced, photographic meteors revealed a number of new – or previously not well studied – meteor streams. For 18 short period meteor streams the scatter in the orbital elements 1/a,πand Ω was studied. An almost linear relation was found between the mean orbital energy of a meteor stream (– 1/a) and the standard deviation σ(1/a), indicating a progressive increase in the orbital scatter with decreasing mean distance to the sun. An index of mean meteoroid density was computed for 11 of the short period streams. The mean density increases with decreasing semi-major axis.The results are interpreted as indicating that the short period meteor streams are initially formed in orbits with periods slightly shorter than Jupiter’s. As the streams gradually drift inwards towards the sun under the influence of various drag forces the individual stream members spread out and only the high density, resistant meteors still remain, or can be recognized, as stream members.


2010 ◽  
Vol 19 (3-4) ◽  
Author(s):  
K. Černis ◽  
I. Eglitis ◽  
I. Wlodarczyk ◽  
J. Zdanavičius ◽  
K. Zdanavičius

AbstractA project for astrometric and photometric observations of asteroids at the Baldone Observatory is described. One of the most important results of the project is the discovery of 2008 OS9, a 600 meter asteroid of the NEO Apollo group. The results of its astrometric and photometric observations at the Molėtai and Baldone observatories are presented. From the brightness variation with the 0.27 mag amplitude, a rotation period of 8.430 ± 0.005 h is determined. Close approaches of the asteroid to Earth and Venus during the next millenium are predicted. The mean values of secular changes in the semi-major axis, eccentricity and inclination are computed with and without the Yarkovsky and YORP effects. A negative value of the difference between the value of semi-major axis computed with the Yarkovsky and YORP effects and without them, da/dt, may indicate retrograde rotation of the asteroid.


2014 ◽  
Vol 9 (S310) ◽  
pp. 216-217
Author(s):  
Hannah Jang-Condell

AbstractSeveral exoplanets have been discovered in close binaries (a < 30 AU) to date.The fact that planets can form in these dynamically challenging environments says that planet formation must be a robust process. Disks in these systems should be tidally truncated to within a few AU, so if they form in situ, the efficiency of planet formation must be high. While the dynamical capture of planets is also a possibility, the probability of these interactions is low, so in situ formation is the more plausible explanation. I examine the truncation of protoplanetary disks in close binary stars, studying how the disk mass is affected as it evolves from higher accretion rates to lower rates. In the gamma Cephei system, a protoplanetary disk around the primary star should be truncated to within a few AU, but enough mass still remains for planets to form. However, if the semimajor axis of the binary is too small or its eccentricity is too high, such as in HD 188753, the disk will have too little mass for planet formation to occur. I present a way to characterize the feasibility of planet formation based on binary orbital parameters such as stellar mass, companion mass, eccentricity and semi-major axis. Using this measure, we can quantify the robustness of planet formation in close binaries and better understand the overall efficiency of planet formation in general.


Sign in / Sign up

Export Citation Format

Share Document