scholarly journals Realistic mock observations of the sizes and stellar mass surface densities of massive galaxies in FIRE-2 zoom-in simulations

2020 ◽  
Vol 501 (2) ◽  
pp. 1591-1602
Author(s):  
T Parsotan ◽  
R K Cochrane ◽  
C C Hayward ◽  
D Anglés-Alcázar ◽  
R Feldmann ◽  
...  

ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2.

Author(s):  
Joseph A O’Leary ◽  
Benjamin P Moster ◽  
Thorsten Naab ◽  
Rachel S Somerville

Abstract We explore the galaxy-galaxy merger rate with the empirical model for galaxy formation, emerge. On average, we find that between 2 per cent and 20 per cent of massive galaxies (log10(m*/M⊙) ≥ 10.3) will experience a major merger per Gyr. Our model predicts galaxy merger rates that do not scale as a power-law with redshift when selected by descendant stellar mass, and exhibit a clear stellar mass and mass-ratio dependence. Specifically, major mergers are more frequent at high masses and at low redshift. We show mergers are significant for the stellar mass growth of galaxies log10(m*/M⊙) ≳ 11.0. For the most massive galaxies major mergers dominate the accreted mass fraction, contributing as much as 90 per cent of the total accreted stellar mass. We reinforce that these phenomena are a direct result of the stellar-to-halo mass relation, which results in massive galaxies having a higher likelihood of experiencing major mergers than low mass galaxies. Our model produces a galaxy pair fraction consistent with recent observations, exhibiting a form best described by a power-law exponential function. Translating these pair fractions into merger rates results in an inaccurate prediction compared to the model intrinsic values when using published observation timescales. We find the pair fraction can be well mapped to the intrinsic merger rate by adopting an observation timescale that decreases linearly with redshift as Tobs = −0.36(1 + z) + 2.39 [Gyr], assuming all observed pairs merge by z = 0.


2006 ◽  
Vol 2 (S235) ◽  
pp. 139-139
Author(s):  
L. Sodré ◽  
A. Mateus ◽  
R. Cid Fernandes ◽  
G. Stasińska ◽  
W. Schoenell ◽  
...  

AbstractWe revisit the bimodality of the galaxy population seen in the local universe. We address this issue in terms of physical properties of galaxies, such as mean stellar ages and stellar masses, derived from the application of a spectral synthesis method to galaxy spectra from the SDSS. We show that the mean light-weighted stellar age of galaxies presents the best description of the bimodality seen in the galaxy population. The stellar mass has an additional role since most of the star-forming galaxies present in the local universe are low-mass galaxies. Our results give support to the existence of a ‘downsizing’ in galaxy formation, where nowadays massive galaxies tend to have stellar populations older than those found in less massive objects.


2020 ◽  
Vol 496 (3) ◽  
pp. 3169-3181
Author(s):  
Makoto Ando ◽  
Kazuhiro Shimasaku ◽  
Rieko Momose

ABSTRACT A proto-cluster core is the most massive dark matter halo (DMH) in a given proto-cluster. To reveal the galaxy formation in core regions, we search for proto-cluster cores at z ∼ 2 in ${\sim}1.5\, \mathrm{deg}^{2}$ of the COSMOS field. Using pairs of massive galaxies [log (M*/M⊙) ≥ 11] as tracers of cores, we find 75 candidate cores, among which 54 per cent are estimated to be real. A clustering analysis finds that these cores have an average DMH mass of $2.6_{-0.8}^{+0.9}\times 10^{13}\, \mathrm{M}_{\odot }$, or $4.0_{-1.5}^{+1.8}\, \times 10^{13} \, \mathrm{M}_{\odot }$ after contamination correction. The extended Press–Schechter model shows that their descendant mass at z = 0 is consistent with Fornax-like or Virgo-like clusters. Moreover, using the IllustrisTNG simulation, we confirm that pairs of massive galaxies are good tracers of DMHs massive enough to be regarded as proto-cluster cores. We then derive the stellar mass function (SMF) and the quiescent fraction for member galaxies of the 75 candidate cores. We find that the core galaxies have a more top-heavy SMF than field galaxies at the same redshift, showing an excess at log (M*/M⊙) ≳ 10.5. The quiescent fraction, $0.17_{-0.04}^{+0.04}$ in the mass range 9.0 ≤ log (M*/M⊙) ≤ 11.0, is about three times higher than that of field counterparts, giving an environmental quenching efficiency of $0.13_{-0.04}^{+0.04}$. These results suggest that stellar mass assembly and quenching are accelerated as early as z ∼ 2 in proto-cluster cores.


2020 ◽  
Vol 640 ◽  
pp. L8 ◽  
Author(s):  
Hideki Umehata ◽  
Ian Smail ◽  
A. M. Swinbank ◽  
Kotaro Kohno ◽  
Yoichi Tamura ◽  
...  

Deep surveys with the Atacama Large Millimeter Array (ALMA) have uncovered a population of dusty star-forming galaxies which are faint or even undetected at optical to near-infrared wavelengths. Their faintness at short wavelengths makes the detailed characterization of the population challenging. Here we present a spectroscopic redshift identification and a characterization of one of these near-infrared-dark galaxies discovered by an ALMA deep survey. The detection of [C I](1–0) and CO(4–3) emission lines determines the precise redshift of the galaxy, ADF22.A2, to be z = 3.9913 ± 0.0008. On the basis of a multi-wavelength analysis, ADF22.A2 is found to be a massive, star-forming galaxy with a stellar mass of M∗ = 1.1−0.6+1.3 × 1011 M⊙ and SFR = 430−150+230 M⊙ yr−1. The molecular gas mass was derived to be M(H2)[CI] = (5.9 ± 1.5)×1010 M⊙, indicating a gas fraction of ≈35%, and the ratios of L[CI](1−0)/LIR and L[CI](1−0)/LCO(4−3) suggest that the nature of the interstellar medium in ADF22.A2 is in accordance with those of other bright submillimeter galaxies. The properties of ADF22.A2, including the redshift, star-formation rate, stellar mass, and depletion time scale (τdep ≈ 0.1−0.2 Gyr), also suggest that ADF22.A2 has the characteristics expected for the progenitors of quiescent galaxies at z ≳ 3. Our results demonstrate the power of ALMA contiguous mapping and line scan, which help us to obtain an unbiased view of galaxy formation in the early Universe.


2019 ◽  
Vol 488 (2) ◽  
pp. 1864-1877 ◽  
Author(s):  
Tommaso Zana ◽  
Pedro R Capelo ◽  
Massimo Dotti ◽  
Lucio Mayer ◽  
Alessandro Lupi ◽  
...  

Abstract Bars are a key factor in the long-term evolution of spiral galaxies, in their unique role in redistributing angular momentum and transporting gas and stars on large scales. The Eris-suite simulations are cosmological zoom-in, N-body, smoothed-particle hydrodynamic simulations built to follow the formation and evolution of a Milky-Way-sized galaxy across the build-up of the large-scale structure. Here we analyse and describe the outcome of two particular simulations taken from the Eris suite – ErisBH and Eris2k – which mainly differ in the prescriptions employed for gas cooling, star formation, and feedback from supernovae and black holes. Our study shows that the enhanced effective feedback in Eris2k, due to the collective effect of the different micro-physics implementations, results in a galaxy that is less massive than its ErisBH counterpart till z ∼ 1. However, when the stellar content is large enough so that global dynamical instabilities can be triggered, the galaxy in Eris2k develops a stronger and more extended bar with respect to ErisBH. We demonstrate that the structural properties and time evolution of the two bars are very different. Our results highlight the importance of accurate sub-grid prescriptions in cosmological zoom-in simulations of the process of galaxy formation and evolution, and the possible use of a statistical sample of barred galaxies to assess the strength of the stellar feedback.


2019 ◽  
Vol 15 (S359) ◽  
pp. 166-167
Author(s):  
Makoto Ando ◽  
Kazuhiro Shimasaku ◽  
Rieko Momose

AbstractA proto-cluster core is the most massive dark matter halo (DMH) in a given proto-cluster. To reveal the galaxy formation in core regions, we search for proto-cluster cores at z ˜ 2 in ˜1.5deg2 of the COSMOS field. Using pairs of massive galaxies (log (M*/Mʘ) ≥ 11) as tracers of cores, we find 75 candidate cores. A clustering analysis and the extended Press-Schechter model show that their descendant mass at z = 0 is consistent with Fornax-like or Virgo-like clusters. Moreover, using the IllustrisTNG simulation, we confirm that pairs of massive galaxies are good tracers of DMHs massive enough to be regarded as proto-cluster cores. We then derive the stellar mass function and the quiescent fraction for member galaxies of the 75 candidate cores. We find that stellar mass assembly and quenching are accelerated as early as z ˜ 2 in proto-cluster cores.


2020 ◽  
Vol 633 ◽  
pp. A105 ◽  
Author(s):  
Cheng Cheng ◽  
Cong Kevin Xu ◽  
Lizhi Xie ◽  
Zhizheng Pan ◽  
Wei Du ◽  
...  

Context. Most of the massive star-forming galaxies are found to have “inside-out” stellar mass growth modes, which means the inner parts of the galaxies mainly consist of the older stellar population, while the star forming in the outskirt of the galaxy is still ongoing. Aims. The high-resolution HST images from Hubble Deep UV Legacy Survey and Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey projects with the unprecedented depth in both F275W and F160W bands are the perfect data sets to study the forming and formed stellar distribution directly. Methods. We selected the low redshift (0.05 <  zspec <  0.3) galaxy sample from the GOODS-North field where the HST F275W and F160W images are available. Then we measured the half light radius in F275W and F160W bands, which are the indicators of the star formation and stellar mass. Results. By comparing the F275W and F160W half light radius, we find the massive galaxies are mainly follow the “inside-out” growth mode, which is consistent with the previous results. Moreover, the HST F275W and F160W images reveal that some of the low-mass galaxies (< 108 M⊙) have the “outside-in” growth mode: their images show a compact UV morphology, implying an ongoing star formation in the galaxy centre, while the stars in the outskirts of the galaxies are already formed. The two modes transit smoothly at stellar mass range about 108 − 9 M⊙ with a large scatter. We also try to identify the possible neighbour massive galaxies from the SDSS data, which represent the massive galaxy sample. We find that all of the spec-z selected galaxies have no massive galaxy nearby. Thus the “outside-in” mode we find in the low-mass galaxies are not likely originated from the environment.


2010 ◽  
Vol 6 (S277) ◽  
pp. 317-320
Author(s):  
Kambiz Fathi

AbstractDisk scale length rd and central surface brightness μ0 for a sample of 29955 bright disk galaxies from the Sloan Digital Sky Survey have been analyzed. Cross correlation of the SDSS sample with the LEDA catalogue allowed us to investigate the variation of the scale lengths for different types of disk/spiral galaxies and present distributions and typical trends of scale lengths all the SDSS bands with linear relations that indicate the relation that connect scale lengths in one passband to another. We use the volume corrected results in the r-band and revisit the relation between these parameters and the galaxy morphology, and find the average values 〈rd〉 = 3.8 ± 2.1 kpc and 〈μ0〉 = 20.2 ± 0.7 mag arcsec−2. The derived scale lengths presented here are representative for a typical galaxy mass of 1010.8 M⊙, and the RMS dispersion is larger for more massive galaxies. We analyse the rd–μ0 plane and further investigate the Freeman Law and confirm that it indeed defines an upper limit for μ0 in bright disks (rmag < 17.0), and that disks in late type spirals (T ≥ 6) have fainter central surface brightness. Our results are based on a sample of galaxies in the local universe (z < 0.3) that is two orders of magnitudes larger than any sample previously studied, and deliver statistically significant results that provide a comprehensive test bed for future theoretical studies and numerical simulations of galaxy formation and evolution.


2020 ◽  
Vol 496 (4) ◽  
pp. 5463-5481
Author(s):  
Mehmet Alpaslan ◽  
Jeremy L Tinker

ABSTRACT The total luminosity of satellite galaxies around a central galaxy, Lsat, is a powerful metric for probing dark matter haloes. We utilize data from the Sloan Digital Sky Survey and DESI Legacy Imaging Surveys to explore the relationship between Lsat and galaxy properties for a sample of 117 966 central galaxies with z ≤ 0.15. At fixed stellar mass, we find that every galaxy property we explore correlates with Lsat, suggesting that dark matter haloes can influence them. We quantify these correlations by computing the mutual information between Lsat and secondary properties and explore how this varies as a function of stellar mass and star-formation activity. We find that absolute r-band magnitude correlates more strongly with Lsat than stellar mass across all galaxy populations; and that effective radius, velocity dispersion, and Sérsic index do so as well for star-forming and quiescent galaxies. Lsat is influenced by the mass of the host halo as well as the halo formation history, with younger haloes having higher Lsat. Lsat cannot distinguish between these two effects, but measurements of galaxy large-scale environment can break this degeneracy. For star-forming centrals, Reff, σv, and Sérsic index all correlate with large-scale density, implying that the halo age affects these properties. For quiescent galaxies, all secondary properties are independent of environment, implying that correlations with Lsat are driven only by halo mass. These results are a significant step forward in quantifying the extent of the galaxy–halo connection, and present a new test of galaxy formation models.


2019 ◽  
Vol 488 (3) ◽  
pp. 3904-3928 ◽  
Author(s):  
Ryan Leaman ◽  
Francesca Fragkoudi ◽  
Miguel Querejeta ◽  
Gigi Y C Leung ◽  
Dimitri A Gadotti ◽  
...  

ABSTRACT Stellar feedback plays a significant role in modulating star formation, redistributing metals, and shaping the baryonic and dark structure of galaxies – however, the efficiency of its energy deposition to the interstellar medium is challenging to constrain observationally. Here we leverage HST and ALMA imaging of a molecular gas and dust shell ($M_{\mathrm{ H}_2} \sim 2\times 10^{5}\, {\rm M}_{\odot }$) in an outflow from the nuclear star-forming ring of the galaxy NGC 3351, to serve as a boundary condition for a dynamical and energetic analysis of the outflowing ionized gas seen in our MUSE TIMER survey. We use starburst99 models and prescriptions for feedback from simulations to demonstrate that the observed star formation energetics can reproduce the ionized and molecular gas dynamics – provided a dominant component of the momentum injection comes from direct photon pressure from young stars, on top of supernovae, photoionization heating, and stellar winds. The mechanical energy budget from these sources is comparable to low luminosity active galactic neuclei, suggesting that stellar feedback can be a relevant driver of bulk gas motions in galaxy centres – although here ≲10−3 of the ionized gas mass is escaping the galaxy. We test several scenarios for the survival/formation of the cold gas in the outflow, including in situ condensation and cooling. Interestingly, the geometry of the molecular gas shell, observed magnetic field strengths and emission line diagnostics are consistent with a scenario where magnetic field lines aided survival of the dusty ISM as it was initially launched (with mass-loading factor ≲1) from the ring by stellar feedback. This system’s unique feedback-driven morphology can hopefully serve as a useful litmus test for feedback prescriptions in magnetohydrodynamical galaxy simulations.


Sign in / Sign up

Export Citation Format

Share Document