scholarly journals Erratum: Black hole masses of tidal disruption event host galaxies II

2020 ◽  
Vol 493 (1) ◽  
pp. 1498-1499
Author(s):  
Thomas Wevers ◽  
Nicholas C Stone ◽  
Sjoert van Velzen ◽  
Peter G Jonker ◽  
Tiara Hung ◽  
...  
2017 ◽  
Vol 471 (2) ◽  
pp. 1694-1708 ◽  
Author(s):  
Thomas Wevers ◽  
Sjoert van Velzen ◽  
Peter G. Jonker ◽  
Nicholas C. Stone ◽  
Tiara Hung ◽  
...  

2019 ◽  
Vol 487 (3) ◽  
pp. 4136-4152 ◽  
Author(s):  
Thomas Wevers ◽  
Nicholas C Stone ◽  
Sjoert van Velzen ◽  
Peter G Jonker ◽  
Tiara Hung ◽  
...  

ABSTRACT We present new medium resolution, optical long-slit spectra of a sample of six ultraviolet (UV)/optical and 17 X-ray-selected tidal disruption event candidate host galaxies. We measure emission line ratios from the optical spectra, finding that the large majority of hosts are quiescent galaxies, while those displaying emission lines are generally consistent with star formation dominated environments; only three sources show clear evidence of nuclear activity. We measure bulge velocity dispersions using absorption lines and infer host black hole (BH) masses using the M – σ relation. While the optical and X-ray host BH masses are statistically consistent with coming from the same parent distribution, the optical host distribution has a visible peak near $M_{\rm BH} \sim 10^6 \, \mathrm{M}_\odot$, whereas the X-ray host distribution appears flat in MBH. We find a subset of X-ray-selected candidates that are hosted in galaxies significantly less luminous (Mg ∼ −16) and less massive (stellar mass ∼ 108.5–9 M⊙) than those of optical events. Using statistical tests we find suggestive evidence that, in terms of BH mass, stellar mass, and absolute magnitude, the hard X-ray hosts differ from the UV/optical and soft X-ray samples. Similar to individual studies, we find that the size of the emission region for the soft X-ray sample is much smaller than the optical emission region, consistent with a compact accretion disc. We find that the typical Eddington ratio of the soft X-ray emission is ∼ 0.01, as opposed to the optical events which have LBB ∼ LEdd. The latter seems artificial if the radiation is produced by self-intersection shocks, and instead suggests a connection to the supermassive black hole.


2020 ◽  
Vol 904 (1) ◽  
pp. 73
Author(s):  
Taeho Ryu ◽  
Julian Krolik ◽  
Tsvi Piran

2020 ◽  
Vol 634 ◽  
pp. A114 ◽  
Author(s):  
Turgay Caglar ◽  
Leonard Burtscher ◽  
Bernhard Brandl ◽  
Jarle Brinchmann ◽  
Richard I. Davies ◽  
...  

Context. The MBH–σ⋆ relation is considered a result of coevolution between the host galaxies and their supermassive black holes. For elliptical bulge hosting inactive galaxies, this relation is well established, but there is still discussion concerning whether active galaxies follow the same relation. Aims. In this paper, we estimate black hole masses for a sample of 19 local luminous active galactic nuclei (AGNs; LLAMA) to test their location on the MBH–σ⋆ relation. In addition, we test how robustly we can determine the stellar velocity dispersion in the presence of an AGN continuum and AGN emission lines, and as a function of signal-to-noise ratio. Methods. Supermassive black hole masses (MBH) were derived from the broad-line-based relations for Hα, Hβ, and Paβ emission line profiles for Type 1 AGNs. We compared the bulge stellar velocity dispersion (σ⋆) as determined from the Ca II triplet (CaT) with the dispersion measured from the near-infrared CO (2-0) absorption features for each AGN and find them to be consistent with each other. We applied an extinction correction to the observed broad-line fluxes and we corrected the stellar velocity dispersion by an average rotation contribution as determined from spatially resolved stellar kinematic maps. Results. The Hα-based black hole masses of our sample of AGNs were estimated in the range 6.34 ≤ log MBH ≤ 7.75 M⊙ and the σ⋆CaT estimates range between 73 ≤ σ⋆CaT ≤ 227 km s−1. From the so-constructed MBH − σ⋆ relation for our Type 1 AGNs, we estimate the black hole masses for the Type 2 AGNs and the inactive galaxies in our sample. Conclusions. We find that our sample of local luminous AGNs is consistent with the MBH–σ⋆ relation of lower luminosity AGNs and inactive galaxies, after correcting for dust extinction and the rotational contribution to the stellar velocity dispersion.


2020 ◽  
Vol 891 (1) ◽  
pp. 93 ◽  
Author(s):  
K. Decker French ◽  
Iair Arcavi ◽  
Ann I. Zabludoff ◽  
Nicholas Stone ◽  
Daichi Hiramatsu ◽  
...  

2019 ◽  
Vol 487 (4) ◽  
pp. 4965-4984 ◽  
Author(s):  
J J Zanazzi ◽  
Dong Lai

ABSTRACT After the tidal disruption event (TDE) of a star around a supermassive black hole (SMBH), the bound stellar debris rapidly forms an accretion disc. If the accretion disc is not aligned with the spinning SMBH’s equatorial plane, the disc will be driven into Lense–Thirring precession around the SMBH’s spin axis, possibly affecting the TDE’s light curve. We carry out an eigenmode analysis of such a disc to understand how the disc’s warp structure, precession, and inclination evolution are influenced by the disc’s and SMBH’s properties. We find an oscillatory warp may develop as a result of strong non-Keplarian motion near the SMBH. The global disc precession frequency matches the Lense–Thirring precession frequency of a rigid disc around a spinning black hole within a factor of a few when the disc’s accretion rate is high, but deviates significantly at low accretion rates. Viscosity aligns the disc with the SMBH’s equatorial plane over time-scales of days to years, depending on the disc’s accretion rate, viscosity, and SMBH’s mass. We also examine the effect of fallback material on the warp evolution of TDE discs, and find that the fallback torque aligns the TDE disc with the SMBH’s equatorial plane in a few to tens of days for the parameter space investigated. Our results place constraints on models of TDE emission which rely on the changing disc orientation with respect to the line of sight to explain observations.


2003 ◽  
Vol 583 (1) ◽  
pp. 134-144 ◽  
Author(s):  
Aaron J. Barth ◽  
Luis C. Ho ◽  
Wallace L. W. Sargent

2019 ◽  
Vol 492 (2) ◽  
pp. 1634-1640
Author(s):  
Sudip Chakraborty ◽  
Sudip Bhattacharyya ◽  
Chandrachur Chakraborty ◽  
A R Rao

ABSTRACT An estimate of the jet inclination angle relative to the accreting black hole’s spin can be useful to probe the jet triggering mechanism and the disc–jet coupling. A tidal disruption event (TDE) of a star by a supermassive spinning black hole provides an excellent astrophysical laboratory to study the jet direction through the possibility of jet precession. In this work, we report a new method to constrain the jet inclination angle β and apply it to the well-sampled jetted TDE Swift J1644+57. This method involves X-ray data analysis and comparisons of jet models with broad properties of the observed X-ray dips, to estimate the upper limit of the extent of the contribution of a plausible jet precession to these X-ray dips. From this limit, we find that β is very likely to be less than ∼15° for Swift J1644+57. Such a well-constrained jet inclination angle could be useful to probe the jet physics. The main advantage of our method is that it does not need to assume an origin of the observed X-ray dips, and the conclusion does not depend on any particular type of jet precession (e.g. the one due to the Lense–Thirring effect) or any specific value of precession frequency or any particular jet model. These make this method reliable and applicable to other jetted TDEs, as well as to other jetted accreting systems.


2009 ◽  
Vol 5 (S267) ◽  
pp. 421-428
Author(s):  
Philip F. Hopkins

AbstractRecent observations of tight correlations between supermassive black hole masses and the properties of their host galaxies demonstrate that black holes and bulges are co-eval and have motivated theoretical models in which feedback from AGN activity regulates the black hole and host galaxy evolution. Combining simulations, analytic models, and recent observations, answers to a number of questions are starting to take shape: how do AGN get triggered? How long do they live? What are typical light curves and what sets them? Is feedback necessary and/or sufficient to regulate BH growth? What effects does that feedback have on the host galaxy? On the host halo? All of this also highlights questions that remain wide open: how does gas get from a few pc to the AGN? What are the actual microphysical mechanisms of feedback? What is the tradeoff between stellar and AGN feedback? And, if there are different “modes” of feedback, where/when are each important?


2014 ◽  
Vol 10 (S312) ◽  
pp. 43-47
Author(s):  
Shuo Li ◽  
Fukun Liu ◽  
Peter Berczik ◽  
Rainer Spurzem

AbstractSupermassive black hole binaries (SMBHBs) are the products of frequent galaxy mergers. It is very hard to be detected in quiescent galaxy. By using one million particle direct N-body simulations on special many-core hardware (GPU cluster), we study the dynamical co-evolution of SMBHB and its surrounding stars, specially focusing on the evolution of stellar tidal disruption event (TDE) rates before and after the coalescence of the SMBHB. We find a boosted TDE rate during the merger of the galaxies. After the coalescence of two supermassive black holes (SMBHs), the post-merger SMBH can get a kick velocity due to the anisotropic GW radiations. Our results about the recoiling SMBH, which oscillates around galactic center, show that most of TDEs are contributed by unbound stars when the SMBH passing through galactic center. In addition, the TDE light curve in SMBHB system is significantly different from the curve for single SMBH, which can be used to identify the SMBHB.


Sign in / Sign up

Export Citation Format

Share Document