scholarly journals The haloes and environments of nearby galaxies (HERON) – II. The outer structure of edge-on galaxies

2020 ◽  
Vol 494 (2) ◽  
pp. 1751-1770 ◽  
Author(s):  
Aleksandr Mosenkov ◽  
R Michael Rich ◽  
Andreas Koch ◽  
Noah Brosch ◽  
David Thilker ◽  
...  

ABSTRACT The haloes and environments of nearby galaxies (HERON) project is aimed at studying haloes and low surface brightness (LSB) details near galaxies. In this second HERON paper, we consider in detail deep imaging (down to surface brightness of ∼28 mag arcsec−2 in the r band) for 35 galaxies, viewed edge-on. We confirm a range of LSB features previously described in the literature but also report new ones. We classify the observed outer shapes of the galaxies into three main types (and their prototypes): disc/diamond-like (NGC 891), oval (NGC 4302), and boxy (NGC 3628). We show that the shape of the outer disc in galaxies does not often follow the general 3D model of an exponential disc: 17 galaxies in our sample exhibit oval or even boxy isophotes at the periphery. Also, we show that the less flattened the outer disc, the more oval or boxy its structure. Many galaxies in our sample have an asymmetric outer structure. We propose that the observed diversity of the galaxy outer shapes is defined by the merger history and its intensity: if no recent multiple minor or single major merging took place, the outer shape is diamond-like or discy. On the contrary, interacting galaxies show oval outer shapes, whereas recent merging appears to transform the outer shape to boxy.

2019 ◽  
Vol 629 ◽  
pp. A12 ◽  
Author(s):  
C. Martínez-Lombilla ◽  
J. H. Knapen

Context. Thick discs can give invaluable information on the formation and evolution history of galaxies as most, if not all, disc galaxies have a thin (classical) disc and a thick disc. Aims. We study the structure of thick discs in extraordinary depth by reaching a surface brightness limit of μrdeep ∼ 28.5−29 mag arcsec−2 with combined g, r, i band images from the IAC Stripe 82 Legacy Project. Methods. We present the characterisation of the thick discs in a sample of five edge-on galaxies. A study of the radial and vertical surface brightness profiles is presented by comparing our data with point spread function (PSF) deconvolved models. Our method begins with an analysis of the background and masking processes. Then we consider the effects of the PSF through galaxy modelling. The galaxy disc components are fitted considering that the thin and thick discs are two stellar fluids that are gravitationally coupled in hydrostatic equilibrium. Results. We find that effects due to the PSF are significant when low surface brightness is reached, especially in the vertical profiles, but it can be accounted for by careful modelling. The galaxy outskirts are strongly affected by the faint wings of the PSF, mainly by PSF-redistributed light from the thin disc. This is a central problem for ultra-deep imaging. The thick-disc component is required to reach satisfactory fit results in the more complex galaxies in our sample, although it is not required for all galaxies. When the PSF is ignored, the brightness of these structures may be overestimated by up to a factor of ∼4. Conclusions. In general, our results are in good agreement with those of previous works, although we reach deeper surface brightness levels, so that the PSF effects are stronger. We obtain scale heights and mass ratios of thin and thick discs (zt, zT, and MT/Mt), which provide excellent agreement with previous studies. Our small initial sample provides evidence for aspects of a wide variety of formation theories for the thick discs in disc galaxies.


2019 ◽  
Vol 490 (2) ◽  
pp. 1539-1569 ◽  
Author(s):  
R Michael Rich ◽  
Aleksandr Mosenkov ◽  
Henry Lee-Saunders ◽  
Andreas Koch ◽  
John Kormendy ◽  
...  

ABSTRACT We use a dedicated 0.7-m telescope to image the haloes of 119 galaxies in the Local Volume to μr ∼ 28–30 mag arcsec−2. The sample is primarily from the Two Micron All Sky Survey Large Galaxy Atlas (Jarrett et al. 2003) and extended to include nearby dwarf galaxies and more distant giant ellipticals, and spans fully the galaxy colour–magnitude diagram including the blue cloud and red sequence. We present an initial overview, including deep images of our galaxies. Our observations reproduce previously reported low surface brightness structures, including extended plumes in M 51, and a newly discovered tidally extended dwarf galaxy in NGC 7331. Low surface brightness structures, or ‘envelopes’, exceeding 50 kpc in diameter are found mostly in galaxies with MV < −20.5, and classic interaction signatures are infrequent. Defining a halo diameter at the surface brightness 28 mag arcsec−2, we find that halo diameter is correlated with total galaxy luminosity. Extended signatures of interaction are found throughout the galaxy colour–magnitude diagram without preference for the red or blue sequences, or the green valley. Large envelopes may be found throughout the colour–magnitude diagram with some preference for the bright end of the red sequence. Spiral and S0 galaxies have broadly similar sizes, but ellipticals extend to notably greater diameters, reaching 150 kpc. We propose that the extended envelopes of disc galaxies are dominated by an extension of the disc population rather than by a classical Population II halo.


2003 ◽  
Vol 209 ◽  
pp. 633-634
Author(s):  
John J. Feldmeier ◽  
J. Christopher Mihos ◽  
Patrick R. Durrell ◽  
Robin Ciardullo ◽  
George H. Jacoby

The galaxy pair NGC 5194/95 (M51) is one of the closest and best known interacting systems. Despite its notoriety, however, many of its features are not well studied. Extending westward from NGC 5195 is a low surface brightness tidal tail, which can only be seen in deep broadband exposures. Our previous [O III] λ5007 planetary nebulae (PN) survey of M51 recovered this tidal tail, and presented us with a opportunity to study the kinematics of a galaxy interaction in progress. We report the results of a spectroscopy survey of the PN, aimed at determining their kinematic properties. We then use these data to constrain new self-consistent numerical models of the system.


2018 ◽  
Vol 14 (S344) ◽  
pp. 280-282
Author(s):  
Megan C. Johnson ◽  
Kristen B. W. McQuinn ◽  
John Cannon ◽  
Charlotte Martinkus ◽  
Evan Skillman ◽  
...  

AbstractStarbursts are finite periods of intense star formation (SF) that can dramatically impact the evolutionary state of a galaxy. Recent results suggest that starbursts in dwarf galaxies last longer and are distributed over more of the galaxy than previously thought, with star formation efficiencies (SFEs) comparable to spiral galaxies, much higher than those typical of non-bursting dwarfs. This difference might be explainable if the starburst mode is externally triggered by gravitational interactions with other nearby systems. We present new, sensitive neutral hydrogen observations of 18 starburst dwarf galaxies, which are part of the STARburst IRregular Dwarf Survey (STARBIRDS) and each were mapped with the Green Bank Telescope (GBT) and/or Parkes Telescope in order to study the low surface brightness gas distributions, a common tracer for tidal interactions.


1999 ◽  
Vol 171 ◽  
pp. 204-206
Author(s):  
Virginia Kilborn ◽  
Erwin de Blok ◽  
Lister Staveley-Smith ◽  
Rachel Webster

AbstractThe low surface brightness galaxy HIPASS1126-72 was detected in the HI Parkes All Sky Survey (HIPASS). The galaxy was previously listed in the Southern Galaxy Catalogue under the name SGC1124.87221. This galaxy represents a class of galaxies that we will readily detect in the HIPASS survey, which have low surface brightness in the optical, but are easily detectable in neutral hydrogen.


2015 ◽  
Vol 11 (S315) ◽  
pp. 236-239
Author(s):  
Johan H. Knapen ◽  
Mauricio Cisternas ◽  
Miguel Querejeta

AbstractWe investigate the influence of interactions on the star formation by studying a sample of almost 1500 of the nearest galaxies, all within a distance of ~45 Mpc. We define the massive star formation rate (SFR), as measured from far-IR emission, and the specific star formation rate (SSFR), which is the former quantity normalized by the stellar mass of the galaxy, and explore their distribution with morphological type and with stellar mass. We then calculate the relative enhancement of these quantities for each galaxy by normalizing them by the median SFR and SSFR values of individual control populations of similar non-interacting galaxies. We find that both SFR and SSFR are enhanced in interacting galaxies, and more so as the degree of interaction is higher. The increase is, however, moderate, reaching a maximum of a factor of 1.9 for the highest degree of interaction (mergers). The SFR and SSFR are enhanced statistically in the population, but in most individual interacting galaxies they are not enhanced at all. We discuss how those galaxies with the largest SFR and/or SSFR enhancement can be defined as starbursts. We argue that this study, based on a representative sample of nearby galaxies, should be used to place constraints on studies based on samples of galaxies at larger distances.


2016 ◽  
Vol 11 (S321) ◽  
pp. 137-146 ◽  
Author(s):  
Roberto Abraham ◽  
Allison Merritt ◽  
Jielai Zhang ◽  
Pieter van Dokkum ◽  
Charlie Conroy ◽  
...  

AbstractWe describe the challenges inherent to low surface brightness imaging and present some early results from the Dragonfly Nearby Galaxies survey. Wide field, ultra-low surface brightness imaging (μg > 31 mag arcsec−2) of the first eight galaxies in the survey reveals a rich variety in the distribution of stars in the outskirts of luminous nearby galaxies. The mean stellar halo mass fraction is 0.009 ± 0.005 with a peak-to-peak scatter of a factor of > 100. Some galaxies in the sample feature strongly structured halos resembling that of M31, but three of the eight galaxies have halos that are completely undetected in our data. We conclude that spiral galaxies as a class exhibit a rich variety in stellar halo properties, implying that their assembly histories have been highly non-uniform. While the outskirts of some galaxies are dominated by halos with the rich substructures predicted by numerical simulations, in other cases the outermost parts of galaxies are simply the extrapolated smooth starlight from enormous stellar disks that closely trace neutral gas morphology out to around 20 scale lengths.


2018 ◽  
Vol 614 ◽  
pp. A143 ◽  
Author(s):  
Gustavo Morales ◽  
David Martínez-Delgado ◽  
Eva K. Grebel ◽  
Andrew P. Cooper ◽  
Behnam Javanmardi ◽  
...  

Context. In hierarchical models of galaxy formation, stellar tidal streams are expected around most, if not all, galaxies. Although these features may provide useful diagnostics of the Λ CDM model, their observational properties remain poorly constrained because they are challenging to detect and interpret and have been studied in detail for only a sparse sampling of galaxy population. More quantitative, systematic approaches are required. We advocate statistical analysis of the counts and properties of such features in archival wide-field imaging surveys for a direct comparison against results from numerical simulations. Aims. We aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies. The sample we construct will act as a foundational dataset for statistical comparison with cosmological models of galaxy formation. Methods. Our approach is based on a visual classification of diffuse features around a volume-limited sample of nearby galaxies, using a post-processing of Sloan Digital Syk Survey (SDSS) imaging optimized for the detection of stellar structure with low surface brightness. Results. At a limiting surface brightness of 28 mag arcsec−2, 14% of the galaxies in our sample exhibit evidence of diffuse features likely to have arisen from minor merging events. Our technique recovers all previously known streams in our sample and yields a number of new candidates. Consistent with previous studies, coherent arc-like features and shells are the most common type of tidal structures found in this study. We conclude that although some detections are ambiguous and could be corroborated or refuted with deeper imaging, our technique provides a reliable foundation for the statistical analysis of diffuse circumgalactic features in wide-area imaging surveys, and for the identification of targets for follow-up studies.


1991 ◽  
Vol 143 ◽  
pp. 601-612
Author(s):  
Lindsey F. Smith

The Wolf-Rayet (WR) feature at 4650 A is observed in about 10% of the dwarf galaxies with high surface brightness knots. The intensity of the feature implies the presence of tens to thousands of WR stars. Hbeta fluxes imply correspondingly large numbers of O stars. The easily observed intensity ratio WRbump/Hbeta is a measure of the WR/O star numbers.The metallicity of dwarf galaxies ranges from Z = Zo/30 to Zo/2, or O/H” = log(O/H)+12 = 7.4 to 8.6. WRbump/Hbeta correlates with O/H′ and O/H″ > 7.9 appears to be a necessary condition for the presence of the WR feature. Giant HII regions in ordinary galaxies extend to higher than solar metallicities and, in extreme cases, WR/O ≈ 1 are implied.The subtypes present in giant HII regions in nearby galaxies appear to be exclusively late type WN and, occasionally, early type WC. Spectra of most BCD galaxies are compatible with a similar population. However, some high metallicity giant HII regions in large galaxies appear to have stronger NIII4640 relative to HeII4686 than occurs in WN subtypes in the Galaxy and the Magellanic Clouds.The data needed for more detailed analysis of dwarf galaxy observations is collected.


1999 ◽  
Vol 192 ◽  
pp. 253-258
Author(s):  
I. Drozdovsky ◽  
N. Tikhonov

We present the results of a detailed BVRI and Hα study of the isolated nearby blue compact dwarf (BCD) galaxy NGC 6789. Judging from the literature the observed galaxy has not yet been resolved into stars up to now. On CCD frames obtained with 6m BTA telescope and 2.5m Nordic telescope the galaxy is well resolved. Its colour-magnitude diagram confirms the two component (core-halo) galaxy morphology, which consists of two stellar populations distinct in structure and colour: an inner high surface-brightness young population within 150 pc from the center of the galaxy, and a relatively low surface-brightness intermediate-age population extending out to at least 600 pc. The distance to the galaxy, estimated from the tip of the red giant branch (TRGB) is 2.1 Mpc which places NGC 6789 close to the Local Group. From the mean colour of the RGB, the mean metal abundance of the halo population is estimated as [Fe/H] ≃ −1 dex.


Sign in / Sign up

Export Citation Format

Share Document