scholarly journals Blazar variability power spectra from radio up to TeV photon energies: Mrk 421 and PKS 2155−304

2020 ◽  
Vol 494 (3) ◽  
pp. 3432-3448
Author(s):  
Arti Goyal

ABSTRACT We present the results of the power spectral density (PSD) analysis for the blazars Mrk 421 and PKS 2155−304, using good-quality, densely sampled light curves at multiple frequencies, covering 17 decades of the electromagnetic spectrum, and variability time-scales from weeks up to a decade. The data were collected from publicly available archives of observatories at radio from Owens Valley Radio Observatory, optical and infrared (B, V, R, I, J, H, and Kbands), X-rays from the Swift and the Rossi X-ray Timing Explorer, high and very high energy (VHE) γ-rays from the Fermi and Very Energetic Radiation Imaging Telescope Array System as well as the High Energy Stereoscopic System. Our results are: (1) the power-law form of the variability power spectra at radio, infrared, and optical frequencies have slopes ∼1.8, indicative of random-walk-type noise processes; (2) the power-law form of the variability power spectra at higher frequencies, from X-rays to VHE  γ-rays, however, have slopes ∼1.2, suggesting a flicker noise-type process; and (3) there is significantly more variability power at X-rays, high and VHE γ-rays on time-scales ≲ 100 d, as compared to lower energies. Our results do not easily fit into a simple model, in which a single compact emission zone is dominating the radiative output of the blazars across all the time-scales probed in our analysis. Instead, we argue that the frequency-dependent shape of the variability power spectra points out a more complex picture, with highly inhomogeneous outflow producing non-thermal emission over an extended, stratified volume.

1970 ◽  
Vol 37 ◽  
pp. 269-279 ◽  
Author(s):  
G. W. Clark ◽  
G. P. Garmire ◽  
W. L. Kraushaar

Recent observations in the X- and γ-Ray region of the electromagnetic spectrum have given strong evidence for the existence of an extragalactic intensity with a slowly steepening power law spectrum in the region 103 to 108 eV. Further data from the OSO-III high energy γ-Ray detector are in agreement with earlier published reports, and suggest that the γ-Rays from high galactic latitudes have a softer spectrum than those from the galactic plane.


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 44 ◽  
Author(s):  
Isak Davids ◽  
Markus Böttcher ◽  
Michael Backes

Centaurus A, powered by a 55 million solar mass supermassive black hole, has been intensively monitored in all accessible wavelength ranges of the electromagnetic spectrum. However, its very-high energy gamma ( γ ) ray flux (TeV photons), obtained from H.E.S.S. is relatively faint, hampering detailed light curve analyses in the most energetic energy band. Yet, the extensive long-term light curve data from Fermi-LAT and Swift-BAT (hard X-rays) allows for cross-correlation studies. We find a hint that X-ray emission from Centaurus A precedes the γ rays by 25 ± 125 days. If this lag is real and related to a γ γ absorption effect in the broad-line region (BLR) around the central source, we can constrain the size of the BLR using light-travel time arguments. These are first results of extended light curve correlation studies between high-energy γ rays and X-rays from Centaurus A.


2020 ◽  
Vol 492 (2) ◽  
pp. 2261-2267 ◽  
Author(s):  
S Sahu ◽  
C E López Fortín ◽  
M E Iglesias Martínez ◽  
S Nagataki ◽  
P Fernández de Córdoba

ABSTRACT The high energy blazar, Markarian 501 was observed as a part of multi-instrument and multiwavelength campaign spanning the whole electromagnetic spectrum for 4.5 months during March 15 to August 1, 2009. On May 1, Whipple 10 m telescope observed a very strong γ-ray flare in a time interval of about 0.5 h. Apart from this flare, high state and low state emissions were also observed by Whipple, VERITAS and MAGIC telescopes. Using the photohadronic model and accounting for the absorption of the extragalactic background light to these very high energy γ-rays, excellent fits are obtained for the observed spectra. We have shown that the intrinsic spectrum for low state emission is flat, however, for high and very high states this is a power-law with slowly increasing exponent.


2020 ◽  
Vol 498 (4) ◽  
pp. 4901-4905
Author(s):  
Jun Fang ◽  
Lu Wen ◽  
Huan Yu ◽  
Songzhan Chen

ABSTRACT eHWC J2019+368 is one of the sources emitting γ-rays with energies higher than 100 TeV based on the recent measurement with the High Altitude Water Cherenkov Observatory (HAWC), and the origin is still in debate. The pulsar PSR J2021+3651 is spatially coincident with the TeV source. We investigate theoretically whether the multiband non-thermal emission of eHWC J2019+368 can originate from the pulsar wind nebula (PWN) G75.2+0.1 powered by PSR J2021+3651. In the model, the spin-down power of the pulsar is transferred to high-energy particles and magnetic field in the nebula. As the particles with an energy distribution of either a broken power law or a power law continually injected into the nebula, the multiband non-thermal emission is produced via synchrotron radiation and inverse Compton scattering. The spectral energy distribution of the nebula from the model with the reasonable parameters is generally consistent with the detected radio, X-ray, and TeV γ-ray fluxes. Our study supports that the PWN has the ability to produce the TeV γ-rays of eHWC J2019+368, and the most energetic particles in the nebula have energies up to about 0.4 PeV.


Author(s):  
Nachiketa Chakraborty

With an explosion of data in the near future, from observatories spanning from radio to gamma-rays, we have entered the era of time domain astronomy. Historically, this field has been limited to modeling the temporal structure with time-series simulations limited to energy ranges blessed with excellent statistics as in X-rays. In addition to ever increasing volumes and variety of astronomical lightcurves, there's a plethora of different types of transients detected not only across the electromagnetic spectrum, but indeed across multiple messengers like counterparts for neutrino and gravitational wave sources. As a result, precise, fast forecasting and modeling the lightcurves or time-series will play a crucial role in both understanding the physical processes as well as coordinating multiwavelength and multimessenger campaigns. In this regard, deep learning algorithms such as recurrent neural networks (RNNs) should prove extremely powerful for forecasting as it has in several other domains. Here we test the performance of a very successful class of RNNs, the Long Short Term Memory (LSTM) algorithms with simulated lightcurves. We focus on univariate forecasting of types of lightcurves typically found in active galactic nuclei (AGN) observations. Specifically, we explore the sensitivity of training and test losses to key parameters of the LSTM network and data characteristics namely gaps and complexity measured in terms of number of Fourier components. We find that typically, the performances of LSTMs are better for pink or flicker noise type sources. The key parameters on which performance is dependent are batch size for LSTM and the gap percentage of the lightcurves. While a batch size of $10-30$ seems optimal, the most optimal test and train losses are under $10 \%$ of missing data for both periodic and random gaps in pink noise. The performance is far worse for red noise. This compromises detectability of transients. The performance gets monotonically worse for data complexity measured in terms of number of Fourier components which is especially relevant in the context of complicated quasi-periodic signals buried under noise. Thus, we show that time-series simulations are excellent guides for use of RNN-LSTMs in forecasting.


2000 ◽  
Vol 177 ◽  
pp. 355-358
Author(s):  
L. Kuiper ◽  
W. Hermsen ◽  
F. Verbunt ◽  
A. Lyne ◽  
I. Stairs ◽  
...  

AbstractWe report on the likely detection of pulsed high-energyγ-rays from the binary millisecond pulsar PSR J0218+4232 in 100–1000 MeV data from CGRO EGRET. Imaging analysis demonstrates that the highly significantγ-ray source 2EG J0220+4228 (∼ 10σ) is for energies > 100 MeV positionally consistent with both PSR J0218+4232 and the BL Lac 3C66A. However, above 1 GeV 3C66A is the evident counterpart, whereas between 100 and 300 MeV PSR J0218+4232 is the most likely one. Timing analysis using one ephemeris valid for all EGRET observations yields in the 100-1000 MeV range a double-pulse profile at a ∼ 3.5σsignificance level. The phase separation is similar to the component separation of ∼ 0.47 observed at X-rays. A comparison of theγ-ray profile with the 610 MHz radio profile in absolute phase shows that the twoγ- ray pulses coincide with two of the three emission features in the complex radio profile.


2019 ◽  
Vol 623 ◽  
pp. A67 ◽  
Author(s):  
I. Pillitteri ◽  
S. Sciortino ◽  
F. Reale ◽  
G. Micela ◽  
C. Argiroffi ◽  
...  

X-ray emission is a characteristic feature of young stellar objects (YSOs) and the result of the interplay between rotation, magnetism, and accretion. For this reason high energy phenomena are key elements to understand the process of star formation, the evolution of their circumstellar disks, and eventually the formation of planets. We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of total duration 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band encompassing simultaneously both soft and hard X-rays (0.3 − 10 keV in XMM-Newton and ≈3 − 80 keV in NuSTAR). The quiescent spectrum is well described by one thermal component at ∼4.2 keV absorbed by NH ∼ 5.5  ×  1022 cm−2. In addition to the hot Fe complex at 6.7 keV, we observed fluorescent emission from Fe at ∼6.4 keV, confirming the previous findings. The line at 6.4 keV is detected during quiescent and flaring states and its flux is variable. The equivalent width is found varying in the range ≈0.15 − 0.5 keV. These values make unrealistic a simple model with a centrally illuminated disk and suggest a role of the cavity containing Elias 29 and possible reverberation processes that could occur in it. We observed two flares that have durations of 20 ks and 50 ks, respectively, and we observed the first flare with both XMM-Newton and NuSTAR. For this flare, we used its peak temperature and timing as diagnostics to infer a loop size of about 1 − 2 R⊙ in length, which is about 20%–30% of the stellar radius. This implies a relatively compact structure. We systematically observed an increase in NH of a factor five during the flares. This behavior has been observed during flares previously detected in Elias 29 with XMM-Newton and ASCA. The phenomenon suggests that the flaring regions could be buried under the accretion streams and at high stellar latitudes because the X-rays from flares pass through gas denser than the gas along the line of sight of the quiescent corona. In a different scenario, a contribution from scattered soft photons to the primary coronal emission could mimic a shallower NH in the quiescent spectrum. In the spectrum of the full NuSTAR exposure, we detect hard X-ray emission in the band ≈20 − 80 keV which is in excess with respect to the thermal emission and that is significant at a level of ≥2σ. We speculate that the hard X-ray emission could be due to a population of energetic electrons accelerated by the magnetic field along the accretion streams. These particles, along with X-ray photons with E >  7.11 keV, could be responsible for pumping up the Fe fluorescence when hitting cold Fe in the circumstellar disk.


2010 ◽  
Vol 6 (S272) ◽  
pp. 581-586
Author(s):  
Guillaume Dubus ◽  
Benoît Cerutti

Abstractγ-ray binaries are systems that emit most of their radiative power above 1 MeV. They are associated with O or Be stars in orbit with a compact object, possibly a young pulsar. Much like colliding wind binaries, the pulsar generates a relativistic wind that interacts with the stellar wind. The result is non-thermal emission from radio to very high energy γ-rays. The wind, radiation and magnetic field of the massive star play a major role in the dynamics and radiative output of the system. They are particularly important to understand the high energy physics at work. Inversely, γ-ray binaries offer novel probes of stellar winds and insights into the fate of O/B binaries.


2014 ◽  
Vol 28 ◽  
pp. 1460176 ◽  
Author(s):  
◽  
G. DE CANEVA ◽  
U. BARRES DE ALMEIDA ◽  
E. LINDFORS ◽  
K. SAITO ◽  
...  

At very high energy (VHE, E> 100 GeV), we count only three blazars of the flat spectrum radio quasars (FSRQs) type to date. The MAGIC experiment detected all three of them; here we present MAGIC observations of 3C 279 and PKS 1510-089. 3C 279 was observed in 2011, without a significant detection, hence upper limits on the differential flux have been computed. The MAGIC observations of PKS 1510-089 in 2012 were triggered by alerts of high activity states and resulted in a significant detection. MAGIC observations are complemented with simultaneous multiwavelength observations in high energy γ rays, X-rays, optical and radio wavelengths and polarization measurements. With the study of the spectral features and the variability observed, we aim to identify the physical processes responsible for the behavior of this source class. In particular, we propose coherent scenarios, which take into account both the modeling of the spectral energy distribution and the constraints obtained from the lightcurves.


Author(s):  
D A Zyuzin ◽  
A V Karpova ◽  
Y A Shibanov ◽  
A Y Potekhin ◽  
V F Suleimanov

Abstract We analyze new XMM-Newton and archival Chandra observations of the middle-aged γ-ray radio-quiet pulsar J1957+5033. We detect, for the first time, X-ray pulsations with the pulsar spin period of the point-like source coinciding by position with the pulsar. This confirms the pulsar nature of the source. In the 0.15–0.5 keV band, there is a single pulse per period and the pulsed fraction is ≈18 ± 6 per cent. In this band, the pulsar spectrum is dominated by a thermal emission component that likely comes from the entire surface of the neutron star, while at higher energies (≳ 0.7 keV) it is described by a power law with the photon index Γ ≈ 1.6. We construct new hydrogen atmosphere models for neutron stars with dipole magnetic fields and non-uniform surface temperature distributions with relatively low effective temperatures. We use them in the spectral analysis and derive the pulsar average effective temperature of ≈(2 − 3) × 105 K. This makes J1957+5033 the coldest among all known thermally emitting neutron stars with ages below 1 Myr. Using the interstellar extinction–distance relation, we constrain the distance to the pulsar in the range of 0.1–1 kpc. We compare the obtained X-ray thermal luminosity with those for other neutron stars and various neutron star cooling models and set some constraints on latter. We observe a faint trail-like feature, elongated ∼8 arcmin from J1957+5033. Its spectrum can be described by a power law with a photon index Γ = 1.9 ± 0.5 suggesting that it is likely a pulsar wind nebula powered by J1957+5033.


Sign in / Sign up

Export Citation Format

Share Document