scholarly journals Likely detection of pulsed high-energy γ-rays from millisecond pulsar PSR J0218+4232

2000 ◽  
Vol 177 ◽  
pp. 355-358
Author(s):  
L. Kuiper ◽  
W. Hermsen ◽  
F. Verbunt ◽  
A. Lyne ◽  
I. Stairs ◽  
...  

AbstractWe report on the likely detection of pulsed high-energyγ-rays from the binary millisecond pulsar PSR J0218+4232 in 100–1000 MeV data from CGRO EGRET. Imaging analysis demonstrates that the highly significantγ-ray source 2EG J0220+4228 (∼ 10σ) is for energies > 100 MeV positionally consistent with both PSR J0218+4232 and the BL Lac 3C66A. However, above 1 GeV 3C66A is the evident counterpart, whereas between 100 and 300 MeV PSR J0218+4232 is the most likely one. Timing analysis using one ephemeris valid for all EGRET observations yields in the 100-1000 MeV range a double-pulse profile at a ∼ 3.5σsignificance level. The phase separation is similar to the component separation of ∼ 0.47 observed at X-rays. A comparison of theγ-ray profile with the 610 MHz radio profile in absolute phase shows that the twoγ- ray pulses coincide with two of the three emission features in the complex radio profile.

2020 ◽  
Vol 495 (2) ◽  
pp. 1641-1649
Author(s):  
A Sanna ◽  
L Burderi ◽  
K C Gendreau ◽  
T Di Salvo ◽  
P S Ray ◽  
...  

ABSTRACT We report on the phase-coherent timing analysis of the accreting millisecond X-ray pulsar IGR J17591–2342, using Neutron Star Interior Composition Explorer (NICER) data taken during the outburst of the source between 2018 August 15 and 2018 October 17. We obtain an updated orbital solution of the binary system. We investigate the evolution of the neutron star spin frequency during the outburst, reporting a refined estimate of the spin frequency and the first estimate of the spin frequency derivative ($\dot{\nu }\sim -7\times 10^{-14}$ Hz s−1), confirmed independently from the modelling of the fundamental frequency and its first harmonic. We further investigate the evolution of the X-ray pulse phases adopting a physical model that accounts for the accretion material torque as well as the magnetic threading of the accretion disc in regions where the Keplerian velocity is slower than the magnetosphere velocity. From this analysis we estimate the neutron star magnetic field Beq = 2.8(3) × 108 G. Finally, we investigate the pulse profile dependence on energy finding that the observed behaviour of the pulse fractional amplitude and lags as a function of energy is compatible with the down-scattering of hard X-ray photons in the disc or the neutron star surface.


2014 ◽  
Vol 28 ◽  
pp. 1460176 ◽  
Author(s):  
◽  
G. DE CANEVA ◽  
U. BARRES DE ALMEIDA ◽  
E. LINDFORS ◽  
K. SAITO ◽  
...  

At very high energy (VHE, E> 100 GeV), we count only three blazars of the flat spectrum radio quasars (FSRQs) type to date. The MAGIC experiment detected all three of them; here we present MAGIC observations of 3C 279 and PKS 1510-089. 3C 279 was observed in 2011, without a significant detection, hence upper limits on the differential flux have been computed. The MAGIC observations of PKS 1510-089 in 2012 were triggered by alerts of high activity states and resulted in a significant detection. MAGIC observations are complemented with simultaneous multiwavelength observations in high energy γ rays, X-rays, optical and radio wavelengths and polarization measurements. With the study of the spectral features and the variability observed, we aim to identify the physical processes responsible for the behavior of this source class. In particular, we propose coherent scenarios, which take into account both the modeling of the spectral energy distribution and the constraints obtained from the lightcurves.


1991 ◽  
Vol 143 ◽  
pp. 397-408
Author(s):  
Thierry Montmerle

Giant HII regions contain highly energetic objects: luminous, massive stars (including Wolf-Rayet stars) generating powerful winds, as well as, often, supernova remnants. These objects interact with the surrounding gas by creating shock waves. Part of the energy input is radiated away in the form of X-rays; also, protons and electrons may be accelerated in situ and generate γ-rays by collisions with the ionized gas. In addition, the stars themselves (including the accompanying low-mass PMS stars) are sources of X-rays, and W-R stars may emit continuum y-rays and are associated with nuclear γ-ray lines seen in the interstellar medium. Therefore, both through the stars they contain and through interactions within the gas, giant HII regions are, in addition to their more traditional properties and over nearly 7 decades in energy, important sources of high-energy radiation.


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 44 ◽  
Author(s):  
Isak Davids ◽  
Markus Böttcher ◽  
Michael Backes

Centaurus A, powered by a 55 million solar mass supermassive black hole, has been intensively monitored in all accessible wavelength ranges of the electromagnetic spectrum. However, its very-high energy gamma ( γ ) ray flux (TeV photons), obtained from H.E.S.S. is relatively faint, hampering detailed light curve analyses in the most energetic energy band. Yet, the extensive long-term light curve data from Fermi-LAT and Swift-BAT (hard X-rays) allows for cross-correlation studies. We find a hint that X-ray emission from Centaurus A precedes the γ rays by 25 ± 125 days. If this lag is real and related to a γ γ absorption effect in the broad-line region (BLR) around the central source, we can constrain the size of the BLR using light-travel time arguments. These are first results of extended light curve correlation studies between high-energy γ rays and X-rays from Centaurus A.


1994 ◽  
Vol 159 ◽  
pp. 113-122
Author(s):  
Rick Edelson

CGRO and IUE observations suggest that the strong, aperiodic variability seen in the Exosat long-look observations of AGN extends over a much wider energy band. Some BL Lac objects (but no Seyfert 1 galaxies) have shown X-ray variations which were so rapid that they violate the assumptions of isotropy inherent in the Eddington limit. In the ultraviolet, Seyfert 1s as a class show an anti-correlation between the variability amplitude and luminosity, while BL Lacs show a positive correlation. Furthermore, Seyfert 1s show strong flux-correlated spectral variability, while BL Lacs show little or none. All of this suggests that the high-energy continua of BL Lacs are beamed towards us, while the ultraviolet continua of Seyfert 1s are emitted isotropically.The November 1991 multi-waveband monitoring of the BL Lac PKS 2155−304 showed strong correlated variability, with the soft X-rays leading the ultraviolet by a few hours, and no measurable lag between the ultraviolet and optical down to a limit of ≲ 1.5 hr. This indicates that the X-rays from this BL Lac are not produced by Compton upscattering, and that the ultraviolet does not come directly from a thermal source such as an accretion disk. This also strongly constrains the relativistic jet model, suggesting that all of the radiation is produced in a flattened region like a shock front.Low temporal resolution ultraviolet/optical monitoring of the Seyfert 1 NGC 5548 in 1989 yielded a strong correlation with no measurable lag to a limit of ≲4 days, casting some doubt on the standard model of thermal emission from an accretion disk in Seyfert 1s. Upcoming X-ray/ultraviolet/optical monitoring of the Seyfert 1 NGC 4151 in December 1993 will have much faster sampling, to permit a strong test of both this model and the competing reprocessing model.


2019 ◽  
Vol 486 (2) ◽  
pp. 1741-1762 ◽  
Author(s):  
L Foffano ◽  
E Prandini ◽  
A Franceschini ◽  
S Paiano

ABSTRACT Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. The non-thermal emission of the relativistic jet peaks in the spectral energy distribution (SED) plot with the synchrotron emission in X-rays and with the gamma-ray emission in the TeV range or above. These high photon energies may represent a challenge for the standard modelling of these sources. They are important for the implications on the indirect measurements of the extragalactic background light, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. In this paper, we perform a comparative study of the multiwavelength spectra of 32 EHBL objects detected by the Swift-BAT telescope in the hard X-ray band and by the Fermi-LAT telescope in the high-energy gamma-ray band. The source sample presents uniform spectral properties in the broad-band SEDs, except for the TeV gamma-ray band where an interesting bimodality seems to emerge. This suggests that the EHBL class is not homogeneous, and a possible subclassification of the EHBLs may be unveiled. Furthermore, in order to increase the number of EHBLs and settle their statistics, we discuss the potential detectability of the 14 currently TeV gamma-ray undetected sources in our sample by the Cherenkov telescopes.


2020 ◽  
Vol 494 (3) ◽  
pp. 3432-3448
Author(s):  
Arti Goyal

ABSTRACT We present the results of the power spectral density (PSD) analysis for the blazars Mrk 421 and PKS 2155−304, using good-quality, densely sampled light curves at multiple frequencies, covering 17 decades of the electromagnetic spectrum, and variability time-scales from weeks up to a decade. The data were collected from publicly available archives of observatories at radio from Owens Valley Radio Observatory, optical and infrared (B, V, R, I, J, H, and Kbands), X-rays from the Swift and the Rossi X-ray Timing Explorer, high and very high energy (VHE) γ-rays from the Fermi and Very Energetic Radiation Imaging Telescope Array System as well as the High Energy Stereoscopic System. Our results are: (1) the power-law form of the variability power spectra at radio, infrared, and optical frequencies have slopes ∼1.8, indicative of random-walk-type noise processes; (2) the power-law form of the variability power spectra at higher frequencies, from X-rays to VHE  γ-rays, however, have slopes ∼1.2, suggesting a flicker noise-type process; and (3) there is significantly more variability power at X-rays, high and VHE γ-rays on time-scales ≲ 100 d, as compared to lower energies. Our results do not easily fit into a simple model, in which a single compact emission zone is dominating the radiative output of the blazars across all the time-scales probed in our analysis. Instead, we argue that the frequency-dependent shape of the variability power spectra points out a more complex picture, with highly inhomogeneous outflow producing non-thermal emission over an extended, stratified volume.


1989 ◽  
Vol 134 ◽  
pp. 191-193 ◽  
Author(s):  
P. Barr ◽  
P. Giommi ◽  
A. Pollock ◽  
G. Tagliaferri ◽  
D. Maccagni ◽  
...  

A wide variety of X-ray spectral forms has been reported in BL Lac objects. Concave spectra, i.e. a steep soft X-ray spectrum with a flat high energy tail, have been reported in a few of the brightest BL Lacs (e.g Urry 1986). Conversely, convex spectra (steep hard X-rays, flat soft X-ray spectrum) have also been reported, sometimes in the same objects (Madejski 1985, Barr et al 1988, George et al 1988). The high energy tails have usually been invoked as a signature of synchrotron-self-Compton emission. Two conflicting interpretations of the convex spectra have been made. Urry et al (1986) suggest absorption by a partially ionised medium, probably intrinsic to the BL Lac object, following the identification of an Oxygen absorption trough in the Einstein OGS spectrum of PKS 2155-304 by Canizares and Kruper (1984). Conversely, Barr et al (1988) attribute the hard X-ray steepening to energy loss mechanisms operating on a synchrotron source.


2020 ◽  
Vol 641 ◽  
pp. A15
Author(s):  
Tuomo Salmi ◽  
Valery F. Suleimanov ◽  
Joonas Nättilä ◽  
Juri Poutanen

We computed accurate atmosphere models of rotation-powered millisecond pulsars in which the polar caps of a neutron star (NS) are externally heated by magnetospheric return currents. The external ram pressure, energy losses, and stopping depth of the penetrating charged particles were computed self-consistently with the atmosphere model, instead of assuming a simplified deep-heated atmosphere in radiative equilibrium. We used exact Compton scattering formalism to model the properties of the emergent X-ray radiation. The deep-heating approximation was found to be valid only if most of the heat originates from ultra-relativistic bombarding particles with Lorentz factors of γ ≳ 100. In the opposite regime, the atmosphere attains a distinct two-layer structure with an overheated optically thin skin on top of an optically thick cool plasma. The overheated skin strongly modifies the emergent radiation: It produces a Compton-upscattered high-energy tail in the spectrum and alters the radiation beaming pattern from limb darkening to limb brightening for emitted hard X-rays. This kind of drastic change in the emission properties can have a significant impact on the inferred NS pulse profile parameters as performed, for example, by Neutron star Interior Composition ExploreR. Finally, the connection between the energy distribution of the return current particles and the atmosphere emission properties offers a new tool to probe the exact physics of pulsar magnetospheres.


Sign in / Sign up

Export Citation Format

Share Document