scholarly journals Dark energy survey year 3 results: Covariance modelling and its impact on parameter estimation and quality of fit

Author(s):  
O Friedrich ◽  
F Andrade-Oliveira ◽  
H Camacho ◽  
O Alves ◽  
R Rosenfeld ◽  
...  

Abstract We describe and test the fiducial covariance matrix model for the combined 2-point function analysis of the Dark Energy Survey Year 3 (DES-Y3) dataset. Using a variety of new ansatzes for covariance modelling and testing we validate the assumptions and approximations of this model. These include the assumption of Gaussian likelihood, the trispectrum contribution to the covariance, the impact of evaluating the model at a wrong set of parameters, the impact of masking and survey geometry, deviations from Poissonian shot-noise, galaxy weighting schemes and other, sub-dominant effects. We find that our covariance model is robust and that its approximations have little impact on goodness-of-fit and parameter estimation. The largest impact on best-fit figure-of-merit arises from the so-called fsky approximation for dealing with finite survey area, which on average increases the χ2 between maximum posterior model and measurement by $3.7{{\ \rm per\ cent}}$ (Δχ2 ≈ 18.9). Standard methods to go beyond this approximation fail for DES-Y3, but we derive an approximate scheme to deal with these features. For parameter estimation, our ignorance of the exact parameters at which to evaluate our covariance model causes the dominant effect. We find that it increases the scatter of maximum posterior values for Ωm and σ8 by about $3{{\ \rm per\ cent}}$ and for the dark energy equation of state parameter by about $5{{\ \rm per\ cent}}$.

2021 ◽  
Vol 503 (2) ◽  
pp. 2688-2705
Author(s):  
C Doux ◽  
E Baxter ◽  
P Lemos ◽  
C Chang ◽  
A Alarcon ◽  
...  

ABSTRACT Beyond ΛCDM, physics or systematic errors may cause subsets of a cosmological data set to appear inconsistent when analysed assuming ΛCDM. We present an application of internal consistency tests to measurements from the Dark Energy Survey Year 1 (DES Y1) joint probes analysis. Our analysis relies on computing the posterior predictive distribution (PPD) for these data under the assumption of ΛCDM. We find that the DES Y1 data have an acceptable goodness of fit to ΛCDM, with a probability of finding a worse fit by random chance of p = 0.046. Using numerical PPD tests, supplemented by graphical checks, we show that most of the data vector appears completely consistent with expectations, although we observe a small tension between large- and small-scale measurements. A small part (roughly 1.5 per cent) of the data vector shows an unusually large departure from expectations; excluding this part of the data has negligible impact on cosmological constraints, but does significantly improve the p-value to 0.10. The methodology developed here will be applied to test the consistency of DES Year 3 joint probes data sets.


2017 ◽  
Vol 475 (4) ◽  
pp. 4524-4543 ◽  
Author(s):  
S Samuroff ◽  
S L Bridle ◽  
J Zuntz ◽  
M A Troxel ◽  
D Gruen ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michela Massimi

AbstractBayesian methods are ubiquitous in contemporary observational cosmology. They enter into three main tasks: (I) cross-checking datasets for consistency; (II) fixing constraints on cosmological parameters; and (III) model selection. This article explores some epistemic limits of using Bayesian methods. The first limit concerns the degree of informativeness of the Bayesian priors and an ensuing methodological tension between task (I) and task (II). The second limit concerns the choice of wide flat priors and related tension between (II) parameter estimation and (III) model selection. The Dark Energy Survey (DES) and its recent Year 1 results illustrate both these limits concerning the use of Bayesianism.


Author(s):  
Erika L Wagoner ◽  
Eduardo Rozo ◽  
Xiao Fang ◽  
Martín Crocce ◽  
Jack Elvin-Poole ◽  
...  

Abstract We implement a linear model for mitigating the effect of observing conditions and other sources of contamination in galaxy clustering analyses. Our treatment improves upon the fiducial systematics treatment of the Dark Energy Survey (DES) Year 1 (Y1) cosmology analysis in four crucial ways. Specifically, our treatment 1) does not require decisions as to which observable systematics are significant and which are not, allowing for the possibility of multiple maps adding coherently to give rise to significant bias even if no single map leads to a significant bias by itself; 2) characterizes both the statistical and systematic uncertainty in our mitigation procedure, allowing us to propagate said uncertainties into the reported cosmological constraints; 3) explicitly exploits the full spatial structure of the galaxy density field to differentiate between cosmology-sourced and systematics-sourced fluctuations within the galaxy density field; 4) is fully automated, and can therefore be trivially applied to any data set The updated correlation function for the DES Y1 redMaGiC catalog minimally impacts the cosmological posteriors from that analysis. Encouragingly, our analysis does improve the goodness of fit statistic of the DES Y1 3×2pt data set (Δχ2 = −6.5 with no additional parameters). This improvement is due in nearly equal parts to both the change in the correlation function and the added statistical and systematic uncertainties associated with our method. We expect the difference in mitigation techniques to become more important in future work as the size of cosmological data sets grows.


2019 ◽  
Vol 490 (3) ◽  
pp. 3573-3587 ◽  
Author(s):  
Y Fang ◽  
N Hamaus ◽  
B Jain ◽  
S Pandey ◽  
G Pollina ◽  
...  

ABSTRACT What are the mass and galaxy profiles of cosmic voids? In this paper, we use two methods to extract voids in the Dark Energy Survey (DES) Year 1 redMaGiC galaxy sample to address this question. We use either 2D slices in projection, or the 3D distribution of galaxies based on photometric redshifts to identify voids. For the mass profile, we measure the tangential shear profiles of background galaxies to infer the excess surface mass density. The signal-to-noise ratio for our lensing measurement ranges between 10.7 and 14.0 for the two void samples. We infer their 3D density profiles by fitting models based on N-body simulations and find good agreement for void radii in the range 15–85 Mpc. Comparison with their galaxy profiles then allows us to test the relation between mass and light at the 10 per cent level, the most stringent test to date. We find very similar shapes for the two profiles, consistent with a linear relationship between mass and light both within and outside the void radius. We validate our analysis with the help of simulated mock catalogues and estimate the impact of photometric redshift uncertainties on the measurement. Our methodology can be used for cosmological applications, including tests of gravity with voids. This is especially promising when the lensing profiles are combined with spectroscopic measurements of void dynamics via redshift-space distortions.


2013 ◽  
Vol 431 (4) ◽  
pp. 3291-3300 ◽  
Author(s):  
Michelle L. Antonik ◽  
David J. Bacon ◽  
Sarah Bridle ◽  
Peter Doel ◽  
David Brooks ◽  
...  

2005 ◽  
Vol 20 (14) ◽  
pp. 3121-3123 ◽  
Author(s):  
◽  
Brenna Flaugher

Dark Energy is the dominant constituent of the universe and we have little understanding of it. We describe a new project aimed at measuring the dark energy equation of state parameter, w, to a statistical precision of ~5% with four separate techniques. The survey will image 5000 deg2 in the southern sky and collect 300 million galaxies, 30,000 galaxy clusters, and 2000 Type Ia supernovae. The survey will be carried out using a new 3 deg2 mosaic camera mounted at the prime focus of the 4m Blanco telescope at CTIO.


2019 ◽  
Vol 485 (4) ◽  
pp. 5086-5095
Author(s):  
C Spiniello ◽  
A V Sergeyev ◽  
L Marchetti ◽  
C Tortora ◽  
N R Napolitano ◽  
...  

ABSTRACT Quadruply lensed quasars are extremely rare objects, but incredibly powerful cosmological tools. Only few dozen are known in the whole sky. Here we present the spectroscopic confirmation of two new quadruplets WG0214-2105 and WG2100-4452 discovered by Agnello & Spiniello (2018) within the Dark Energy Survey public footprints. We have conducted spectroscopic follow-up of these systems with the Southern African Large Telescope as part of a program that aims at confirming the largest possible number of strong gravitational lenses in the equatorial and Southern hemisphere. For both systems, we present the sources spectra that allowed us to estimate their redshifts and unambiguously confirm their lensing nature. For the brighter deflector (WG2100-4452) we measure the spectroscopic redshift and the stellar velocity dispersion from optical absorption lines in the spectrum. For the other system we infer the lens redshift from photometry, being the quality of the spectra not good enough. We obtain photometry for both lenses, directly from multiband images, isolating the lenses from the quasars. One of the quadruplets, WG0214-2105, was also observed by Pan-STARRS, allowing us to estimate the apparent brightness of each quasar image at two different epochs, and thus to find evidence for flux variability. This result could suggest a microlensing event for the faintest components, although intrinsic variability cannot be excluded with only two epochs. Finally, we present simple lens models for both quadruplets, obtaining Einstein radii, singular isothermal ellipsoid velocity dispersions, ellipticities, and position angles of the lenses, as well as time-delay predictions assuming a concordance cosmological model.


Sign in / Sign up

Export Citation Format

Share Document