scholarly journals The intermediate polar cataclysmic variable GK Persei 120 years after the nova explosion: a first dynamical mass study

Author(s):  
A Álvarez-Hernández ◽  
M A P Torres ◽  
P Rodrí guez-Gil ◽  
T Shahbaz ◽  
G C Anupama ◽  
...  

Abstract We present a dynamical study of the intermediate polar and dwarf nova cataclysmic variable GK Per (Nova Persei 1901) based on a multi-site optical spectroscopy and R-band photometry campaign. The radial velocity curve of the evolved donor star has a semi-amplitude K2 = 126.4 ± 0.9 km s−1 and an orbital period P = 1.996872 ± 0.000009 d. We refine the projected rotational velocity of the donor star to vrotsin i = 52 ± 2 km s−1 which, together with K2, provides a donor star to white dwarf mass ratio q = M2/M1 = 0.38 ± 0.03. We also determine the orbital inclination of the system by modelling the phase-folded ellipsoidal light curve and obtain i = 67○ ± 5○. The resulting dynamical masses are $M_{1}=1.03^{+0.16}_{-0.11} \, \mathrm{M}_{\odot }$ and $M_2 = 0.39^{+0.07}_{-0.06} \, \mathrm{M}_{\odot }$ at 68 per cent confidence level. The white dwarf dynamical mass is compared with estimates obtained by modelling the decline light curve of the 1901 nova event and X-ray spectroscopy. The best matching mass estimates come from the nova light curve models and an X-ray data analysis that uses the ratio between the Alfvén radius in quiescence and during dwarf nova outburst.

2004 ◽  
Vol 190 ◽  
pp. 85-90
Author(s):  
Brian Warner ◽  
Patrick A. Woudt

AbstractSeventeen examples are given of Cataclysmic Variable (CV) stars possessing both Dwarf Nova Oscillations (DNOs) and Quasi-Periodic Oscillations (QPOs). These form an extension of the X-Ray Two-QPO correlation to frequencies three orders of magnitude lower. We draw attention to the existence of a second type of DNO in CVs, which is probably caused by magnetically channelled accretion onto the white dwarf.


1987 ◽  
Vol 93 ◽  
pp. 261-267
Author(s):  
J. Schrijver ◽  
A.C. Brinkman ◽  
H. Van Der Woerd

AbstractThe first results of the analysis of new EXOSAT observations of the DQ Her type cataclysmic variable TV Col are presented. The period of the 1–10 kev X-ray pulsation associated with the white-dwarf rotation is now established as 1911 s. The pulsations are most pronounced in the lower energy channels (1–3.5 keV). The X-ray light curve shows absorption features associated with the orbital period of the system.


1983 ◽  
Vol 72 ◽  
pp. 155-172
Author(s):  
Brian Warner

Until 1976, cataclysmic variable star research proceeded with few requirements for the inclusion of magnetic fields in theoretical models. Although models for low-mass X-ray binaries stressed the importance of magnetic fields (Lamb et at. 1973) and there was an increasing number of known magnetic single white dwarfs (Angel 1977), and a magnetised white dwarf had been one of the models proposed to explain the rapid oscillations in DQ Her (Herbst et al. 1974, Katz 1975), there was no anticipation of the more general role that magnetic fields now seem destined to play. The two major reviews of the time (Robinson 1976, Warner 1976) scarcely considered the presence of magnetic fields.


2002 ◽  
Vol 187 ◽  
pp. 167-172
Author(s):  
T.R. Vaccaro ◽  
R.E. Wilson

AbstractThe red dwarf + white dwarf eclipsing binary V471 Tau shows a variable Hα feature that varies from absorption during eclipse to maximum emission during white dwarf transit. In 1998 we obtained simultaneous BVRI photometry and Hα spectroscopy, with thorough phase coverage of the 12.5 hour orbital period. A binary star model was used with our light curve, radial velocity, and Hα data to refine stellar and orbital parameters. Combined absorption-emission profiles were generated by the model and fit to the observations, yielding a red star radius of 0.94R⊙. Orbital inclination 78° is required with this size and other known parameters. The model includes three spots 1,000 K cooler than the surrounding photosphere. The variable Hα profile was modeled as a chromospheric fluorescing region (essentially on the surface of the red star) centered at the substellar point. Additional emission seen outside our modeled profiles may be large co-rotating prominences that complicate the picture.


2012 ◽  
Vol 21 (1-2) ◽  
Author(s):  
I. Hachisu ◽  
M. Kato

AbstractWe have analyzed the optical light curve of the symbiotic star V407 Cyg that underwent a classical nova outburst in 2010 March. Being guided by a supersoft X-ray phase observed during days 20-40 after the nova outburst, we are able to reproduce the light curve during a very early phase of the nova outburst. Our model consists of an outbursting white dwarf and an extended equatorial disk. An extremely massive white dwarf of 1.35-1.37 M


1996 ◽  
Vol 158 ◽  
pp. 269-272
Author(s):  
K. Mukai ◽  
E. M. Schlegel ◽  
J. H. Swank ◽  
T. Naylor ◽  
Janet H. Wood
Keyword(s):  
X Rays ◽  
X Ray ◽  

AbstractWe report on a 1-day ASCA observation of the eclipsing dwarf nova HT Cas. We confirm the presence of an X-ray eclipse, which is narrow and deep. The data are consistent with the X-rays originating entirely from the immediate neighborhood of the white dwarf. We draw some preliminary conclusions on the boundary layer and other relevant issues.


2020 ◽  
Vol 72 (5) ◽  
Author(s):  
Mariko Kato ◽  
Izumi Hachisu

Abstract We have examined the optical/X-ray light curves of seven well-observed recurrent novae, V745 Sco, M31N 2008-12a, LMC N 1968, U Sco, RS Oph, LMC N 2009a, T Pyx, and one recurrent nova candidate LMC N 2012a. Six novae out of the eight show a simple relation that the duration of supersoft X-ray source (SSS) phase is 0.70 times the total duration of the outburst (= X-ray turnoff time), i.e., tSSS = 0.70 toff, the total duration of which ranges from 10 to 260 d. These six recurrent novae show a broad rectangular X-ray light curve shape, the first half-period of which is highly variable in the X-ray count rate. The SSS phase also corresponds to an optical plateau phase that indicates a large accretion disk irradiated by a hydrogen-burning white dwarf (WD). The two other recurrent novae, T Pyx and V745 Sco, show a narrow triangular-shaped X-ray light curve without an optical plateau phase. Their relations between tSSS and toff are rather different from the above six recurrent novae. We also present theoretical SSS durations for recurrent novae with various WD masses and stellar metallicities (Z = 0.004, 0.01, 0.02, and 0.05) and compare them with the observed durations of these recurrent novae. We show that SSS duration is a good indicator of WD mass in recurrent novae with a broad rectangular X-ray light curve shape.


1996 ◽  
Vol 158 ◽  
pp. 73-74
Author(s):  
Irina Voloshina

SS Cyg is the brightest known and therefore best studied classical dwarf nova and it was the first one from which X-ray radiation was discovered. SS Cyg is unique because it has been detected at very wide range of energies, from a few eV up to ~ 10 keV (Jones & Watson 1992). It was chosen as the first cataclysmic variable for X-ray observations with the Japanese satellite ASCA. Simultaneous optical photometric and spectroscopic observations were also provided for completeness of the study.


2004 ◽  
Vol 194 ◽  
pp. 259-259
Author(s):  
R. Ishioka ◽  

Our time-series photometric observations of a short outburst of HT Cam in 2001 strongly suggest that disk instabilities occurred during the outburst.HT Cam is a cataclysmic variable identified as the optical counterpart of the hard X-ray source RX J0757.0+6306, discovered during the ROSAT All-Sky Survey. Tovmassian et al. (1998) suggested that this object is an intermediate polar with a shortest orbital period of 80.92min and a spin period of 8.52min. However, the existence of dwarf nova-like outbursts and the short orbital period allowed an alternative interpretation that it may be an SU UMa-type dwarf nova or WZ Sge-type stars (Tovmassian et al. 1998).


2016 ◽  
Vol 12 (S329) ◽  
pp. 402-402 ◽  
Author(s):  
E. Gosset ◽  
L. Mahy ◽  
Y. Damerdji ◽  
C. Nitschelm ◽  
H. Sana ◽  
...  

AbstractWe present here a modern study of the radial velocity curve and of the photometric light curve of the very interesting supergiant O7.5If + O9I(f) binary system HD 166734. The physical parameters of the stars and the orbital parameters are carefully determined. We also perform the analysis of the observed X-ray light curve of this colliding-wind binary.


Sign in / Sign up

Export Citation Format

Share Document