scholarly journals Mode changing in J1909−3744: the most precisely timed pulsar

Author(s):  
M T Miles ◽  
R M Shannon ◽  
M Bailes ◽  
D J Reardon ◽  
S Buchner ◽  
...  

Abstract We present baseband radio observations of the millisecond pulsar J1909−3744, the most precisely timed pulsar, using the MeerKAT telescope as part of the MeerTime pulsar timing array campaign. During a particularly bright scintillation event the pulsar showed strong evidence of pulse mode changing, among the first millisecond pulsars and the shortest duty cycle millisecond pulsar to do so. Two modes appear to be present, with the weak (lower signal-to-noise ratio) mode arriving 9.26 ±3.94 μs earlier than the strong counterpart. Further, we present a new value of the jitter noise for this pulsar of 8.20 ± 0.14 ns in one hour, finding it to be consistent with previous measurements taken with the MeerKAT (9 ± 3 ns) and Parkes (8.6 ± 0.8 ns) telescopes, but inconsistent with the previously most precise measurement taken with the Green Bank telescope (14 ± 0.5 ns). Timing analysis on the individual modes is carried out for this pulsar, and we find an approximate $10\%$ improvement in the timing precision is achievable through timing the strong mode only as opposed to the full sample of pulses. By forming a model of the average pulse from templates of the two modes, we time them simultaneously and demonstrate that this timing improvement can also be achieved in regular timing observations. We discuss the impact an improvement of this degree on this pulsar would have on searches for the stochastic gravitational wave background, as well as the impact of a similar improvement on all MeerTime PTA pulsars.

2004 ◽  
Vol 218 ◽  
pp. 439-440
Author(s):  
Tinggao Yang ◽  
Guangren Ni

Long term timing of multiple millisecond pulsars can contribute to the study of an ensemble pulsar time scale PTens. A wavelet decomposition algorithm (WDA) was applied to define a PTens using the available millisecond pulsar timing datA. The PTens obtained from WDA is more stable than those resulting from other algorithms. The Chinese 50 m radio telescope is specially designed for PTens study and detection of gravitational wave background via millisecond pulsars timing observations. A scheme for multiple millisecond pulsar timing and ensemble pulsar time study is discussed in some detail.


2012 ◽  
Vol 425 (2) ◽  
pp. 1597-1597 ◽  
Author(s):  
R. van Haasteren ◽  
Y. Levin ◽  
G. H. Janssen ◽  
K. Lazaridis ◽  
M. Kramer ◽  
...  

2013 ◽  
Vol 22 (01) ◽  
pp. 1341008 ◽  
Author(s):  
BHAL CHANDRA JOSHI

In the last decade, the use of an ensemble of radio pulsars to constrain the characteristic strain caused by a stochastic gravitational wave background has advanced the cause of detection of very low frequency gravitational waves (GWs) significantly. This electromagnetic means of GW detection, called Pulsar Timing Array (PTA), is reviewed in this paper. The principle of operation of PTA, the current operating PTAs and their status are presented along with a discussion of the main challenges in the detection of GWs using PTA.


2011 ◽  
Vol 414 (2) ◽  
pp. 1777-1787 ◽  
Author(s):  
D. R. B. Yardley ◽  
W. A. Coles ◽  
G. B. Hobbs ◽  
J. P. W. Verbiest ◽  
R. N. Manchester ◽  
...  

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2418
Author(s):  
Michele Maiorano ◽  
Francesco De Paolis ◽  
Achille A. Nucita

Pulsar timing uses the highly stable pulsar spin period to investigate many astrophysical topics. In particular, pulsar timing arrays make use of a set of extremely well-timed pulsars and their time correlations as a challenging detector of gravitational waves. It turns out that pulsar timing arrays are particularly sensitive to ultra-low-frequency gravitational waves, which makes them complementary to other gravitational-wave detectors. Here, we summarize the basics, focusing especially on supermassive black-hole binaries and cosmic strings, which have the potential to form a stochastic gravitational-wave background in the pulsar timing array detection band, and the scientific goals on this challenging topic. We also briefly outline the recent interesting results of the main pulsar timing array collaborations, which have found strong evidence of a common-spectrum process compatible with a stochastic gravitational-wave background and mention some new perspectives that are particularly interesting in view of the forthcoming radio observatories such as the Five hundred-meter Aperture Spherical Telescope, the MeerKAT telescope, and the Square Kilometer Array.


2019 ◽  
Vol 488 (2) ◽  
pp. 2190-2201 ◽  
Author(s):  
X J Liu ◽  
M J Keith ◽  
C G Bassa ◽  
B W Stappers

Abstract We investigate the impact of noise processes on high-precision pulsar timing. Our analysis focuses on the measurability of the second spin frequency derivative $\ddot{\nu }$. This $\ddot{\nu }$ can be induced by several factors including the radial velocity of a pulsar. We use Bayesian methods to model the pulsar times-of-arrival in the presence of red timing noise and dispersion measure variations, modelling the noise processes as power laws. Using simulated times-of-arrival that both include red noise, dispersion measure variations, and non-zero $\ddot{\nu }$ values, we find that we are able to recover the injected $\ddot{\nu }$, even when the noise model used to inject and recover the input parameters are different. Using simulations, we show that the measurement uncertainty on $\ddot{\nu }$ decreases with the timing baseline T as Tγ, where γ = −7/2 + α/2 for power-law noise models with shallow power-law indices α (0 < α < 4). For steep power-law indices (α > 8), the measurement uncertainty reduces with T−1/2. We applied this method to times-of-arrival from the European Pulsar Timing Array and the Parkes Pulsar Timing Array and determined $\ddot{\nu }$ probability density functions for 49  millisecond pulsars. We find a statistically significant $\ddot{\nu }$ value for PSR B1937+21 and consider possible options for its origin. Significant (95 per cent C.L.) values for $\ddot{\nu }$ are also measured for PSRs J0621+1002 and J1022+1001, thus future studies should consider including it in their ephemerides. For binary pulsars with small orbital eccentricities, such as PSR J1909−3744, extended ELL1 models should be used to overcome computational issues. The impacts of our results on the detection of gravitational waves are also discussed.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 344-350
Author(s):  
B. W. Stappers

AbstractSignificant advances have been made in the sensitivity of pulsar timing arrays for the detection of gravitational waves in the last decade. This presentation looked forward to consider where the development of pulsar timing arrays might go as we head towards the Square Kilometre Array (SKA) and then beyond. I reviewed where progress needs to be made in terms of sensitivity to gravitational waves, including improvements to existing observing approaches and new telescopes such as MeerKAT and FAST and techniques like LEAP. The dramatic increase in the number of millisecond pulsars is presented and how that might affect progress towards a first detection is discussed. Developments in analytic techniques were also discussed, including the removal of interstellar medium effects, red noise and pulse profile variations. A summary of how the SKA can contribute through an increased millisecond pulsar population and pulsar timing sensitivity was presented. With the likelihood that the SKA will implement some form of Key Science Project approach, some ideas of how will this affect how the International Pulsar Timing Array effort and how it might evolve into a KSP were discussed.


2012 ◽  
Vol 8 (S291) ◽  
pp. 177-177
Author(s):  
Ryan Shannon

AbstractThe direct detection of gravitational waves will usher in a new era of astrophysics, enabling the study of regions of the universe opaque to electromagnetic radiation or electromagnetically quiet. An ensemble of pulsars (referred to as a pulsar timing array) provides a set of clocks distributed across the Galaxy sensitive to gravitational waves with periods on the order of five years (frequencies of many nanohertz). Plausible source of gravitational waves in this frequency band include massive black hole binaries in the throes of mergers and oscillating cosmic strings. The stochastic gravitational wave background, the sum of gravitational waves emitted throughout the universe, is the most likely signal to be detected by a pulsar timing array.While the detection of gravitational waves will be a milestone in pulsar astronomy, a constraining limit on the strength of the gravitational wave background can be used to constrain cosmological models and early Universe physics. Here we present a new algorithm that can be used to constrain the strength of the GWB with a pulsar timing array. We then apply this technique to Parkes Pulsar Timing Array observations and place a new limit on the strength of the GWB. We conclude by discussing the astrophysical implications of this limit and the prospects for detecting gravitational waves with pulsars.


Sign in / Sign up

Export Citation Format

Share Document