scholarly journals The anisotropy of the power spectrum in periodic cosmological simulations

2021 ◽  
Vol 503 (4) ◽  
pp. 5638-5645
Author(s):  
Gábor Rácz ◽  
István Szapudi ◽  
István Csabai ◽  
László Dobos

ABSTRACT The classical gravitational force on a torus is anisotropic and always lower than Newton’s 1/r2 law. We demonstrate the effects of periodicity in dark matter only N-body simulations of spherical collapse and standard Lambda cold dark matter (ΛCDM) initial conditions. Periodic boundary conditions cause an overall negative and anisotropic bias in cosmological simulations of cosmic structure formation. The lower amplitude of power spectra of small periodic simulations is a consequence of the missing large-scale modes and the equally important smaller periodic forces. The effect is most significant when the largest mildly non-linear scales are comparable to the linear size of the simulation box, as often is the case for high-resolution hydrodynamical simulations. Spherical collapse morphs into a shape similar to an octahedron. The anisotropic growth distorts the large-scale ΛCDM dark matter structures. We introduce the direction-dependent power spectrum invariant under the octahedral group of the simulation volume and show that the results break spherical symmetry.

2019 ◽  
Vol 491 (1) ◽  
pp. 1295-1310 ◽  
Author(s):  
Giulia Despali ◽  
Mark Lovell ◽  
Simona Vegetti ◽  
Robert A Crain ◽  
Benjamin D Oppenheimer

ABSTRACT We use high-resolution hydrodynamical simulations run with the EAGLE model of galaxy formation to study the differences between the properties of – and subsequently the lensing signal from – subhaloes of massive elliptical galaxies at redshift 0.2, in Cold and Sterile Neutrino (SN) Dark Matter models. We focus on the two 7 keV SN models that bracket the range of matter power spectra compatible with resonantly produced SN as the source of the observed 3.5 keV line. We derive an accurate parametrization for the subhalo mass function in these two SN models relative to cold dark matter (CDM), as well as the subhalo spatial distribution, density profile, and projected number density and the dark matter fraction in subhaloes. We create mock lensing maps from the simulated haloes to study the differences in the lensing signal in the framework of subhalo detection. We find that subhalo convergence is well described by a lognormal distribution and that signal of subhaloes in the power spectrum is lower in SN models with respect to CDM, at a level of 10–80 per cent, depending on the scale. However, the scatter between different projections is large and might make the use of power spectrum studies on the typical scales of current lensing images very difficult. Moreover, in the framework of individual detections through gravitational imaging a sample of ≃30 lenses with an average sensitivity of $M_{\rm {sub}} = 5 \times 10^{7}\, {\rm M}_{\odot}$ would be required to discriminate between CDM and the considered sterile neutrino models.


2021 ◽  
Vol 2021 (12) ◽  
pp. 003
Author(s):  
José Fonseca ◽  
Chris Clarkson

Abstract In this paper, we study how to directly measure the effect of peculiar velocities in the observed angular power spectra. We do this by constructing a new anti-symmetric estimator of Large Scale Structure using different dark matter tracers. We show that the Doppler term is the major component of our estimator and we show that we can measure it with a signal-to-noise ratio up to ∼ 50 using a futuristic SKAO HI galaxy survey. We demonstrate the utility of this estimator by using it to provide constraints on the Euler equation.


2019 ◽  
Vol 485 (4) ◽  
pp. 5474-5489 ◽  
Author(s):  
Mark R Lovell ◽  
Jesús Zavala ◽  
Mark Vogelsberger

Abstract A cut-off in the linear matter power spectrum at dwarf galaxy scales has been shown to affect the abundance, formation mechanism and age of dwarf haloes, and their galaxies at high and low redshifts. We use hydrodynamical simulations of galaxy formation within the ETHOS framework in a benchmark model that has such a cut-off and that has been shown to be an alternative to the cold dark matter (CDM) model that alleviates its dwarf-scale challenges. We show how galaxies in this model form differently to CDM, on a halo-by-halo basis, at redshifts z ≥ 6. We show that when CDM haloes with masses around the ETHOS half-mode mass scale are resimulated with the ETHOS matter power spectrum, they form with 50 per cent less mass than their CDM counterparts due to their later formation times, yet they retain more of their gas reservoir due to the different behaviour of gas and dark matter during the monolithic collapse of the first haloes in models with a galactic-scale cut-off. As a result, galaxies in ETHOS haloes near the cut-off scale grow rapidly between z = 10 and 6 and by z = 6 end up having very similar stellar masses, higher gas fractions and higher star formation rates relative to their CDM counterparts. We highlight these differences by making predictions for how the number of galaxies with old stellar populations is suppressed in ETHOS for both z = 6 galaxies and for gas-poor Local Group fossil galaxies. Interestingly, we find an age gradient in ETHOS between galaxies that form in high- and low-density environments.


1987 ◽  
Vol 117 ◽  
pp. 367-367
Author(s):  
Rosemary F. G. Wyse ◽  
Bernard J. T. Jones

We present a simple model for the formation of elliptical galaxies, based on a binary clustering hierarchy of dark matter, the chemical enrichment of the gas at each level being controlled by supernovae. The initial conditions for the non-linear phases of galaxy formation are set by the post-recombination power spectrum of density fluctuations. We investigate two models for this power spectrum - the first is a straightforward power law, |δk|2 ∝ kn, and the second is Peeble's analytic approximation to the emergent spectrum in a universe dominated by cold dark matter. The normalisation is chosen such that on some scale, say M ∼ 1012M⊙, the objects that condense out have properties - radius and velocity dispersion - resembling ‘typical’ galaxies. There is some ambiguity in this due to the poorly determined mass-to-light ratio of a typical elliptical galaxy — we look at two normalisations, σ1D ∼ 350kms−1 and σ1D ∼ 140kms−1. The choice determines which of Compton cooling or hydrogen cooling is more important during the galaxy formation period. The non-linear behaviour of the perturbations is treated by the homogeneous sphere approximation.


1997 ◽  
Vol 12 (17) ◽  
pp. 1275-1282 ◽  
Author(s):  
M. Kawasaki ◽  
Naoshi Sugiyama ◽  
T. Yanagida

Gauge-mediated supersymmetry breaking models suggest the presence of the light gravitino with mass ~ 1 keV which can be warm dark matter in our universe. We consider large scale structure of the universe in the warm dark matter model and find that the power spectrum of the gravitino dark matter is almost the same as that of a cold dark matter at scales larger than about 1 Mpc. We also study the Ly α absorption systems which are presumed to be galaxies at high redshifts and show that the baryon density in the damped Ly α absorption systems predicted by the gravitino dark matter model is quite consistent with the present observation.


2020 ◽  
Vol 495 (4) ◽  
pp. 4994-5013 ◽  
Author(s):  
Shaun T Brown ◽  
Ian G McCarthy ◽  
Benedikt Diemer ◽  
Andreea S Font ◽  
Sam G Stafford ◽  
...  

ABSTRACT A large body of work based on collisionless cosmological N-body simulations going back over two decades has advanced the idea that collapsed dark matter (DM) haloes have simple and approximately universal forms for their mass density and pseudo-phase-space density (PPSD) distributions. However, a general consensus on the physical origin of these results has not yet been reached. In the present study, we explore to what extent the apparent universality of these forms holds when we vary the initial conditions (i.e. the primordial power spectrum of density fluctuations) away from the standard CMB-normalized case, but still within the context of lambda cold dark matter with a fixed expansion history. Using simulations that vary the initial amplitude and shape, we show that the structure of DM haloes retains a clear memory of the initial conditions. Specifically, increasing (lowering) the amplitude of fluctuations increases (decreases) the concentration of haloes and, if pushed far enough, the density profiles deviate strongly from the NFW form that is a good approximation for the CMB-normalized case. Although, an Einasto form works well. Rather than being universal, the slope of the PPSD (or pseudo-entropy) profile steepens (flattens) with increasing (decreasing) power spectrum amplitude and can exhibit a strong halo mass dependence. Our results therefore indicate that the previously identified universality of the structure of DM haloes is mostly a consequence of adopting a narrow range of (CMB-normalized) initial conditions for the simulations. Our new suite provides a useful test-bench against which physical models for the origin of halo structure can be validated.


1988 ◽  
Vol 130 ◽  
pp. 552-552
Author(s):  
A. F. Heavens ◽  
J. A. Peacock

We have calculated the growth of angular momentum about local density maxima at early epochs. We find that high peaks experience higher torques than low peaks, counteracting the short collapse time during which the high peaks can acquire angular momentum. Which effect is dominant depends on the perturbation power spectrum: for power spectra characteristic of both cold dark matter and hot dark matter, the effects nearly cancel, and the total angular momentum acquired by a collapsing object is almost independent of the height of the peak. Furthermore, the distributions of angular momenta acquired by collapsing protosystems are extremely broad, for all power spectra, far exceeding any modest differences between peaks of different height.These results indicate that it is not possible to account for the systematic differences in angular momentum properties of disk and elliptical galaxies simply by postulating that the latter arise from fluctuations of greater overdensity, contrary to some recent suggestions. The figure shows the probability distributions for the final angular momentum acquired by peaks of dimensionless height 1–4, for a power spectrum similar to cold dark matter. A fuller account of this work has been submitted to MNRAS.


2019 ◽  
Vol 491 (4) ◽  
pp. 6102-6119 ◽  
Author(s):  
Josh Borrow ◽  
Daniel Anglés-Alcázar ◽  
Romeel Davé

ABSTRACT We present a framework for characterizing the large-scale movement of baryons relative to dark matter in cosmological simulations, requiring only the initial conditions and final state of the simulation. This is performed using the spread metric that quantifies the distance in the final conditions between initially neighbouring particles, and by analysing the baryonic content of final haloes relative to that of the initial Lagrangian regions (LRs) defined by their dark matter component. Applying this framework to the simba cosmological simulations, we show that 40 per cent (10 per cent) of cosmological baryons have moved $\gt 1\, h^{-1}\, {\rm Mpc}{}$ ($3\, h^{-1}\, {\rm Mpc}{}$) by z = 0, primarily due to entrainment of gas by jets powered by an active galactic nucleus, with baryons moving up to $12\, h^{-1}\, {\rm Mpc}{}$ away in extreme cases. Baryons decouple from the dynamics of the dark matter component due to hydrodynamic forces, radiative cooling, and feedback processes. As a result, only 60 per cent of the gas content in a given halo at z = 0 originates from its LR, roughly independent of halo mass. A typical halo in the mass range Mvir = 1012–1013 M⊙ only retains 20 per cent of the gas originally contained in its LR. We show that up to 20 per cent of the gas content in a typical Milky Way-mass halo may originate in the region defined by the dark matter of another halo. This inter-Lagrangian baryon transfer may have important implications for the origin of gas and metals in the circumgalactic medium of galaxies, as well as for semi-analytic models of galaxy formation and ‘zoom-in’ simulations.


1999 ◽  
Vol 183 ◽  
pp. 269-269
Author(s):  
Norimasa Sugiura ◽  
Naoshi Sugiyama ◽  
Misao Sasaki

Anisotropies in luminosity distance-redshift relation (dL − z relation) caused by the large-scale structure (LSS) of the universe are studied. We solve the Raychaudhuri equation on FRW models taking account of LSS by the linear perturbation method. Numerical calculations to evaluate the amplitude of the anisotropies are done on flat models with cosmological constant and open models, employing Cold Dark Matter models and COBE-normalization for the power spectrum of the density perturbations.


2005 ◽  
Vol 14 (02) ◽  
pp. 223-256 ◽  
Author(s):  
PAOLO CIARCELLUTI

This is the second paper of a series devoted to the study of the cosmological implications of the existence of mirror dark matter. The parallel hidden mirror world has the same microphysics as the observable one and couples the latter only gravitationally. The primordial nucleosynthesis bounds demand that the mirror sector should have a smaller temperature T′ than the ordinary one T, and by this reason its evolution can be substantially deviated from the standard cosmology. In this paper we take scalar adiabatic perturbations as the input in a flat Universe, and compute the power spectra for ordinary and mirror CMB and LSS, changing the cosmological parameters, and always comparing with the CDM case. We find differences in both the CMB and LSS power spectra, and we demonstrate that the LSS spectrum is particularly sensitive to the mirror parameters, due to the presence of both the oscillatory features of mirror baryons and the collisional mirror Silk damping. For x<0.3 the mirror baryon–photon decoupling happens before the matter–radiation equality, so that CMB and LSS power spectra in linear regime are equivalent for mirror and CDM cases. For higher x-values the LSS spectra strongly depend on the amount of mirror baryons. Finally, qualitatively comparing with the present observational limits on the CMB and LSS spectra, we show that for x<0.3 the entire dark matter could be made of mirror baryons, while in the case x≳0.3 the pattern of the LSS power spectrum excludes the possibility of dark matter consisting entirely of mirror baryons, but they could present as admixture (up to ~50%) to the conventional CDM.


Sign in / Sign up

Export Citation Format

Share Document