scholarly journals On the density profile of dark matter substructure in gravitational lens galaxies

2014 ◽  
Vol 442 (4) ◽  
pp. 3598-3603 ◽  
Author(s):  
Simona Vegetti ◽  
Mark Vogelsberger
2004 ◽  
Vol 220 ◽  
pp. 143-144
Author(s):  
Masamune Oguri

Recent development of the structure formation theory based on the cold dark matter scenario implies that a number of larger separation lensed quasars, for which a confirmed detection has not yet been achieved, will be observed in the ongoing large-scale surveys such as the 2dF survey and SDSS. We show that statistics of such large separation lenses can be a powerful probe of the density profile of dark halos. After we summarize the current status of the lens surveys in the 2dF and SDSS, we focus our discussion on what information can be extracted from these lens surveys. in addition, we also propose statistics of differential time delays between multiple images as an alternative probe of the density profile of dark halos.


2006 ◽  
Vol 20 ◽  
pp. 289-290
Author(s):  
I. Momcheva ◽  
K. Williams ◽  
C. Keeton ◽  
A. Zabludoff

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Marc S. Seigar

We investigate the dark matter halo density profile of M33. We find that the HI rotation curve of M33 is best described by an NFW dark matter halo density profile model, with a halo concentration of and a virial mass of . We go on to use the NFW concentration of M33, along with the values derived for other galaxies (as found in the literature), to show that correlates with both spiral arm pitch angle and supermassive black hole mass.


2019 ◽  
Vol 631 ◽  
pp. A40 ◽  
Author(s):  
S. Schuldt ◽  
G. Chirivì ◽  
S. H. Suyu ◽  
A. Yıldırım ◽  
A. Sonnenfeld ◽  
...  

We present a detailed analysis of the inner mass structure of the Cosmic Horseshoe (J1148+1930) strong gravitational lens system observed with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). In addition to the spectacular Einstein ring, this systems shows a radial arc. We obtained the redshift of the radial arc counterimage zs, r = 1.961 ± 0.001 from Gemini observations. To disentangle the dark and luminous matter, we considered three different profiles for the dark matter (DM) distribution: a power law profile, the Navarro, Frenk, and White (NFW) profile, and a generalized version of the NFW profile. For the luminous matter distribution, we based the model on the observed light distribution that is fitted with three components: a point mass for the central light component resembling an active galactic nucleus, and the remaining two extended light components scaled by a constant mass-to-light ratio (M/L). To constrain the model further, we included published velocity dispersion measurements of the lens galaxy and performed a self-consistent lensing and axisymmetric Jeans dynamical modeling. Our model fits well to the observations including the radial arc, independent of the DM profile. Depending on the DM profile, we get a DM fraction between 60% and 70%. With our composite mass model we find that the radial arc helps to constrain the inner DM distribution of the Cosmic Horseshoe independently of the DM profile.


2020 ◽  
Vol 492 (4) ◽  
pp. 5721-5729 ◽  
Author(s):  
Elliot Y Davies ◽  
Philip Mocz

ABSTRACT We explore the effect of a supermassive black hole (SMBH) on the density profile of a fuzzy dark matter (FDM) soliton core at the centre of a dark matter (DM) halo. We numerically solve the Schrödinger–Poisson equations, treating the black hole as a gravitational point mass, and demonstrate that this additional perturbing term has a ‘squeezing’ effect on the soliton density profile, decreasing the core radius, and increasing the central density. In the limit of large black hole mass, the solution approaches one akin to the hydrogen atom, with radius inversely proportional to the black hole mass. By applying our analysis to two specific galaxies (M87 and the Milky Way) and pairing it with known observational limits on the amount of centrally concentrated DM, we obtain a constraint on the FDM particle mass, finding that the range 10−22.12 eV ≲ m ≲ 10−22.06 eV should be forbidden (taking into account additional factors concerning the lifetime of the soliton in the vicinity of a black hole). Improved observational mass measurements of the black hole and total enclosed masses will significantly extend the lower bound on the excluded FDM mass region, while self-consistent theoretical modelling of the soliton–black hole system can extend the upper bound.


2020 ◽  
Vol 492 (4) ◽  
pp. 5102-5120
Author(s):  
Ryan Leaman ◽  
Tomás Ruiz-Lara ◽  
Andrew A Cole ◽  
Michael A Beasley ◽  
Alina Boecker ◽  
...  

ABSTRACT Recent photometric observations revealed a massive, extended (MGC ≳ 105 M⊙; Rh ∼ 14 pc) globular cluster (GC) in the central region (D3D ≲ 100 pc) of the low-mass (M* ∼ 5 × 106 M⊙) dwarf irregular galaxy Pegasus. This massive GC offers a unique opportunity to study star cluster inspiral as a mechanism for building up nuclear star clusters, and the dark matter (DM) density profile of the host galaxy. Here, we present spectroscopic observations indicating that the GC has a systemic velocity of ΔV = 3 ± 8 km s−1 relative to the host galaxy, and an old, metal-poor stellar population. We run a suite of orbital evolution models for a variety of host potentials (cored to cusped) and find that the GC’s observed tidal radius (which is ∼3 times larger than the local Jacobi radius), relaxation time, and relative velocity are consistent with it surviving inspiral from a distance of Dgal ≳ 700 pc (up to the maximum tested value of Dgal = 2000 pc). In successful trials, the GC arrives to the galaxy centre only within the last ∼1.4 ± 1 Gyr. Orbits that arrive in the centre and survive are possible in DM haloes of nearly all shapes, however to satisfy the GC’s structural constraints a galaxy DM halo with mass MDM ≃ 6 ± 2 × 109 M⊙, concentration c ≃ 13.7 ± 0.6, and an inner slope to the DM density profile of −0.9 ≤ γ ≤ −0.5 is preferred. The gas densities necessary for its creation and survival suggest the GC could have formed initially near the dwarf’s centre, but then was quickly relocated to the outskirts where the weaker tidal field permitted an increased size and relaxation time – with the latter preserving the former during subsequent orbital decay.


Sign in / Sign up

Export Citation Format

Share Document