lens galaxies
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 6)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Sampath Mukherjee ◽  
Léon V E Koopmans ◽  
R Benton Metcalf ◽  
Cresenzo Tortora ◽  
Matthieu Schaller ◽  
...  

Abstract We use nine different galaxy formation scenarios in ten cosmological simulation boxes from the EAGLE suite of ΛCDM hydrodynamical simulations to assess the impact of feedback mechanisms in galaxy formation and compare these to observed strong gravitational lenses. To compare observations with simulations, we create strong lenses with M* > 1011 M⊙ with the appropriate resolution and noise level, and model them with an elliptical power-law mass model to constrain their total mass density slope. We also obtain the mass-size relation of the simulated lens-galaxy sample. We find significant variation in the total mass density slope at the Einstein radius and in the projected stellar mass-size relation, mainly due to different implementations of stellar and AGN feedback. We find that for lens selected galaxies, models with either too weak or too strong stellar and/or AGN feedback fail to explain the distribution of observed mass-density slopes, with the counter-intuitive trend that increasing the feedback steepens the mass density slope around the Einstein radius (≈ 3-10 kpc). Models in which stellar feedback becomes inefficient at high gas densities, or weaker AGN feedback with a higher duty cycle, produce strong lenses with total mass density slopes close to isothermal (i.e. −dlog (ρ)/dlog (r) ≈ 2.0) and slope distributions statistically agreeing with observed strong lens galaxies in SLACS and BELLS. Agreement is only slightly worse with the more heterogeneous SL2S lens galaxy sample. Observations of strong-lens selected galaxies thus appear to favor models with relatively weak feedback in massive galaxies.


2020 ◽  
Vol 640 ◽  
pp. A59
Author(s):  
Laila Linke ◽  
Patrick Simon ◽  
Peter Schneider ◽  
Thomas Erben ◽  
Daniel J. Farrow ◽  
...  

Context. Several semi-analytic models (SAMs) try to explain how galaxies form, evolve, and interact inside the dark matter large-scale structure. These SAMs can be tested by comparing their predictions for galaxy–galaxy–galaxy lensing (G3L), which is weak gravitational lensing around galaxy pairs, with observations. Aims. We evaluate the SAMs by Henriques et al. (2015, MNRAS, 451, 2663, hereafter H15) and by Lagos et al. (2012, MNRAS, 426, 2142, hereafter L12), which were implemented in the Millennium Run, by comparing their predictions for G3L to observations at smaller scales than previous studies and also for pairs of lens galaxies from different populations. Methods. We compared the G3L signal predicted by the SAMs to measurements in the overlap of the Galaxy And Mass Assembly survey (GAMA), the Kilo-Degree Survey (KiDS), and the VISTA Kilo-degree Infrared Galaxy survey (VIKING) by splitting lens galaxies into two colour and five stellar-mass samples. Using an improved G3L estimator, we measured the three-point correlation of the matter distribution with “mixed lens pairs” with galaxies from different samples, and with “unmixed lens pairs” with galaxies from the same sample. Results. Predictions by the H15 SAM for the G3L signal agree with the observations for all colour-selected samples and all but one stellar-mass-selected sample with 95% confidence. Deviations occur for lenses with stellar masses below 9.5 h−2 M⊙ at scales below 0.2 h−1 Mpc. Predictions by the L12 SAM for stellar-mass selected samples and red galaxies are significantly higher than observed, while the predicted signal for blue galaxy pairs is too low. Conclusions. The L12 SAM predicts more pairs of low stellar mass and red galaxies than the H15 SAM and the observations, as well as fewer pairs of blue galaxies. This difference increases towards the centre of the galaxies’ host halos. Likely explanations are different treatments of environmental effects by the SAMs and different models of the initial mass function. We conclude that G3L provides a stringent test for models of galaxy formation and evolution.


2019 ◽  
Vol 885 (1) ◽  
pp. 75 ◽  
Author(s):  
J. Jiménez-Vicente ◽  
E. Mediavilla

2019 ◽  
Vol 488 (3) ◽  
pp. 3745-3758 ◽  
Author(s):  
Yun Chen ◽  
Ran Li ◽  
Yiping Shu ◽  
Xiaoyue Cao

ABSTRACT By comparing the dynamical and lensing masses of early-type lens galaxies, one can constrain both the cosmological parameters and the density profiles of galaxies. We explore the constraining power on cosmological parameters and the effect of the lens mass model in this method with 161 galaxy-scale strong lensing systems, which is currently the largest sample with both high-resolution imaging and stellar dynamical data. We assume a power-law mass model for the lenses, and consider three different parametrizations for γ (i.e. the slope of the total mass density profile) to include the effect of the dependence of γ on redshift and surface mass density. When treating δ (i.e. the slope of the luminosity density profile) as a universal parameter for all lens galaxies, we find the limits on the cosmological parameter Ωm are quite weak and biased, and also heavily dependent on the lens mass model in the scenarios of parametrizing γ with three different forms. When treating δ as an observable for each lens, the unbiased estimate of Ωm can be obtained only in the scenario of including the dependence of γ on both the redshift and the surface mass density, that is $\Omega _\mathrm{ m} = 0.381^{+0.185}_{-0.154}$ at 68 per cent confidence level in the framework of a flat ΛCDM model. We conclude that the significant dependencies of γ on both the redshift and the surface mass density, as well as the intrinsic scatter of δ among the lenses, need to be properly taken into account in this method.


2019 ◽  
Vol 623 ◽  
pp. A94 ◽  
Author(s):  
Sandra Unruh ◽  
Peter Schneider ◽  
Stefan Hilbert

Using the same lens galaxies, the ratios of tangential shears for different source galaxy redshifts is equal to the ratios of their corresponding angular-diameter distances. This is the so-called shear-ratio test (SRT) and it is valid when effects induced by the intervening large-scale structure (LSS) can be neglected. The dominant LSS effect is magnification bias which, on the one hand, induces an additional shear, and on the other hand, causes a magnification of the lens population. Our objective is to quantify the magnification bias for the SRT and show an easy-to-apply mitigation strategy that does not rely on additional observations. We use ray-tracing data through the Millennium simulation to measure the influence of magnification on the SRT and test our mitigation strategy. Using the SRT as a null-test we find deviations from zero up to 10% for a flux-limited sample of lens galaxies, which is a strong function of lens redshift and the lens-source line-of-sight separation. Using our mitigation strategy we can improve the null-test by a factor of ∼100.


2018 ◽  
Vol 867 (2) ◽  
pp. 107 ◽  
Author(s):  
Kenneth C. Wong ◽  
Alessandro Sonnenfeld ◽  
James H. H. Chan ◽  
Cristian E. Rusu ◽  
Masayuki Tanaka ◽  
...  

2018 ◽  
Vol 613 ◽  
pp. A15 ◽  
Author(s):  
Patrick Simon ◽  
Stefan Hilbert

Galaxies are biased tracers of the matter density on cosmological scales. For future tests of galaxy models, we refine and assess a method to measure galaxy biasing as a function of physical scalekwith weak gravitational lensing. This method enables us to reconstruct the galaxy bias factorb(k) as well as the galaxy-matter correlationr(k) on spatial scales between 0.01hMpc−1≲k≲ 10hMpc−1for redshift-binned lens galaxies below redshiftz≲ 0.6. In the refinement, we account for an intrinsic alignment of source ellipticities, and we correct for the magnification bias of the lens galaxies, relevant for the galaxy-galaxy lensing signal, to improve the accuracy of the reconstructedr(k). For simulated data, the reconstructions achieve an accuracy of 3–7% (68% confidence level) over the abovek-range for a survey area and a typical depth of contemporary ground-based surveys. Realistically the accuracy is, however, probably reduced to about 10–15%, mainly by systematic uncertainties in the assumed intrinsic source alignment, the fiducial cosmology, and the redshift distributions of lens and source galaxies (in that order). Furthermore, our reconstruction technique employs physical templates forb(k) andr(k) that elucidate the impact of central galaxies and the halo-occupation statistics of satellite galaxies on the scale-dependence of galaxy bias, which we discuss in the paper. In a first demonstration, we apply this method to previous measurements in the Garching-Bonn Deep Survey and give a physical interpretation of the lens population.


2016 ◽  
Vol 93 (12) ◽  
Author(s):  
Alexander A. Potapov ◽  
Ramil N. Izmailov ◽  
Kamal K. Nandi

2015 ◽  
Vol 456 (1) ◽  
pp. 870-884 ◽  
Author(s):  
Claudio Bruderer ◽  
Justin I. Read ◽  
Jonathan P. Coles ◽  
Dominik Leier ◽  
Emilio E. Falco ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document