scholarly journals Triple trouble for XZ Tau: deep imaging with the Jansky Very Large Array

2014 ◽  
Vol 439 (4) ◽  
pp. 4057-4060 ◽  
Author(s):  
D. Forgan ◽  
R. J. Ivison ◽  
B. Sibthorpe ◽  
J. S. Greaves ◽  
E. Ibar
2020 ◽  
Vol 15 (S359) ◽  
pp. 347-349
Author(s):  
Carpes P. Hekatelyne ◽  
Thaisa Storchi-Bergmann

AbstractWe present Multi-Object Spectrograph (GMOS) Integral Field Unit (IFU), Hubble Space Telescope (HST) and Very Large Array (VLA) observations of the inner kpc of the OH Megamaser galaxy IRAS 11506-3851. In this work we discuss the kinematics and excitation of the gas as well as its radio emission. The HST images reveal an isolated spiral galaxy and the combination with the GMOS-IFU flux distributions allowed us to identify a partial ring of star-forming regions surrounding the nucleus with a radius of ≍500 pc. The emission-line ratios and excitation map reveal that the region inside the ring present mixed/transition excitation between those of Starbursts and Active Galactic Nuclei (AGN), while regions along the ring are excited by Starbursts. We suggest that we are probing a buried or fading AGN that could be both exciting the gas and originating an outflow.


2007 ◽  
Vol 3 (S242) ◽  
pp. 427-431
Author(s):  
M. K. Argo ◽  
A. Pedlar ◽  
T. W. B. Muxlow ◽  
R. J. Beswick

AbstractA study of the distribution of OH gas in the central region of the nearby active starburst galaxy M82 has confirmed two previously known bright masers and revealed several new main line masers. Three of these are seen only at 1665 MHz, one is detected only at 1667 MHz, while the rest are detected in both lines. Observations covering both the 1665 and 1667 MHz lines, conducted with both the Very Large Array (VLA) and the Multi-Element Radio Linked Interferometer Network (MERLIN), have been used to accurately measure the positions and velocities of these features. This has allowed a comparison with catalogued continuum features in the starburst such as HII regions and supernova remnants, as well as known water and satellite line OH masers. Most of the main line masers appear to be associated with known HII regions although the two detected only at 1665 MHz are seen along the same line of sight as known supernova remnants.


1986 ◽  
Vol 64 (4) ◽  
pp. 531-535 ◽  
Author(s):  
Nebojsa Duric ◽  
E. R. Seaquist

Very large array, radio-continuum observations of the edge-on spiral galaxy NGC 3079 are presented. The observations reveal that the nucleus has windlike properties and that the central region of the galaxy exhibits an unusual figure-eight morphology that shows evidence of severe depolarization and a flattening spectral index away from the nucleus. A qualitative description of a model is presented to account for the observed radio properties. It is shown that a wind-driven shock propagating away from the nucleus and focused by the ambient disk gas can give rise to the observed morphology.


2018 ◽  
Vol 236 (1) ◽  
pp. 8 ◽  
Author(s):  
C. J. Law ◽  
G. C. Bower ◽  
S. Burke-Spolaor ◽  
B. J. Butler ◽  
P. Demorest ◽  
...  

1984 ◽  
Vol 34 (1-4) ◽  
pp. 39-48
Author(s):  
P. K. Seidelmann ◽  
G. H. Kaplan ◽  
K. J. Johnston ◽  
C. M. Wade

Icarus ◽  
1992 ◽  
Vol 100 (1) ◽  
pp. 48-59 ◽  
Author(s):  
R.Todd Clancy ◽  
Arie W. Grossman ◽  
Duane O. Muhleman

2003 ◽  
Vol 582 (2) ◽  
pp. 1073-1101 ◽  
Author(s):  
Rachel A. Osten ◽  
Thomas R. Ayres ◽  
Alexander Brown ◽  
Jeffrey L. Linsky ◽  
Anita Krishnamurthi

2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


Sign in / Sign up

Export Citation Format

Share Document