scholarly journals The complex evolutionary paths of local infrared bright galaxies: a high-angular resolution mid-infrared view

2016 ◽  
Vol 463 (3) ◽  
pp. 2405-2424 ◽  
Author(s):  
A. Alonso-Herrero ◽  
R. Poulton ◽  
P. F. Roche ◽  
A. Hernán-Caballero ◽  
I. Aretxaga ◽  
...  
1989 ◽  
Vol 8 ◽  
pp. 563-564
Author(s):  
W.C. Danchi ◽  
M. Bester ◽  
P.R. McCullough ◽  
C.H. Townes

During the last few years, two new instruments using long baseline interferometry have been constructed for high angular resolution astronomy in the mid-infrared spectral region (8-12 μxm). One called SOIRDETE-Synthese d’Overture en InfraRouge a DEux TElescopes-was built by J. Gay and his collaborators at CERGA. SOIRDETE has a fixed E-W 15 m baseline and two 1 m diameter telescopes of conventional design. This instrument obtains interference fringes by adjusting an optical-precision delay line in discrete steps to compensate for the geometrical delay of the projected baseline. The interference fringe from the source is detected using HgCdTe photodiodes. Because the instrumental delay has discrete steps a time-domain interferogram is created. This interferogram, upon Fourier transformation to the frequency domain, yields information about the spectral characteristics of the source. First fringes have recently been obtained with this instrument (Gay, 1988).


2013 ◽  
Vol 9 (S304) ◽  
pp. 225-226
Author(s):  
Daniel Asmus ◽  
Sebastian F. Hönig ◽  
Poshak Gandhi ◽  
Alain Smette ◽  
Wolfgang J. Duschl

AbstractWe present the largest mid-infrared (MIR) atlas of active galactic nuclei at sub-arcsec spatial scales containing 253 objects with a median redshift of 0.016. It comprises all available ground-based high-angular resolution MIR observations performed to date with 8-meter class telescopes and includes 895 photometric measurements. All types of AGN are present in the atlas, which also includes 80 per cent of the 9-month BAT AGN sample. Therefore, this atlas and its subsamples are very well-suited for AGN unification studies. A first application of the atlas is the extension of the MIR–X-ray luminosity correlation for AGN.


1991 ◽  
Vol 374 ◽  
pp. L29 ◽  
Author(s):  
Eric Keto ◽  
Garrett Jernigan ◽  
John Arens ◽  
Margaret Meixner ◽  
Roger Ball

2011 ◽  
Vol 536 ◽  
pp. A36 ◽  
Author(s):  
D. Asmus ◽  
P. Gandhi ◽  
A. Smette ◽  
S. F. Hönig ◽  
W. J. Duschl

1993 ◽  
Vol 413 ◽  
pp. L23 ◽  
Author(s):  
Eric Keto ◽  
Roger Ball ◽  
John Arens ◽  
Garrett Jernigan ◽  
Margaret Meixner ◽  
...  

2020 ◽  
Vol 501 (1) ◽  
pp. 531-540
Author(s):  
Julie Magri ◽  
Lucien Lehmann ◽  
Ludovic Grossard ◽  
Laurent Delage ◽  
François Reynaud ◽  
...  

ABSTRACT In the framework of the Astronomical Light Optical Hybrid Analysis (ALOHA) laboratory mid-infrared (MIR) up-conversion fibred interferometer in the L band, we report on the influence of the input-stage architecture. Using an amplitude division set-up in the visible or near-infrared is a straightforward choice in most cases. In the MIR context, the results are slightly different and we show that a wavefront division set-up is needed. These in-laboratory principle experiments allow us to measure a reliable 88 per cent instrumental contrast with high flux and to obtain fringes from faint sources at 3.5 μm with a spectral bandwith of 37 nm converted to 817 nm. An equivalent limiting L-band magnitude around 3.9, equivalent to 3.0 fW nm−1, could be demonstrated on 1 m class telescopes. This opens the possibility of planning future on-sky tests at the Center for High Angular Resolution Astronomy (CHARA) array and of predicting the performance attained.


2021 ◽  
Vol 922 (2) ◽  
pp. 157
Author(s):  
M. Martínez-Paredes ◽  
O. González-Martín ◽  
K. HyeongHan ◽  
S. Geier ◽  
I. García-Bernete ◽  
...  

Abstract To study the nuclear (≲1 kpc) dust of nearby (z < 0.1) quasi-stellar objects (QSOs), we obtained new near-infrared (NIR) high angular resolution (∼0.″3) photometry in the H and Ks bands for 13 QSOs with available mid-infrared (MIR) high angular resolution spectroscopy (∼7.5–13.5 μm). We find that in most QSOs, the NIR emission is unresolved. We subtract the contribution from the accretion disk, which decreases from NIR (∼35%) to MIR (∼2.4%). We also estimate these percentages assuming a bluer accretion disk and find that the contribution in the MIR is nearly seven times larger. We find that the majority of objects (64%, 9/13) are better fitted by the disk+wind H17 model, while others can be fitted by the smooth F06 (14%, 2/13), clumpy N08 (7%, 1/13), clumpy H10 (7%, 1/13), and two-phase media S16 (7%, 1/13) models. However, if we assume the bluer accretion disk, the models fit only 2/13 objects. We measured two NIR-to-MIR spectral indexes, α NIR−MIR(1.6–8.7 μm) and α NIR−MIR(2.2–8.7 μm), and two MIR spectral indexes, α MIR(7.8–9.8 μm) and α MIR(9.8–11.7 μm), from models and observations. From observations, we find that the NIR-to-MIR spectral indexes are ∼−1.1, and the MIR spectral indexes are ∼−0.3. Comparing the synthetic and observed values, we find that none of the models simultaneously match the measured NIR-to-MIR and 7.8–9.8 μm slopes. However, we note that measuring α MIR(7.8–9.8 μm) on the starburst-subtracted Spitzer/IRS spectrum gives values of the slopes (∼−2) that are similar to the synthetic values obtained from the models.


Sign in / Sign up

Export Citation Format

Share Document