scholarly journals The spatial distribution of neutral hydrogen as traced by low H i mass galaxies

2016 ◽  
Vol 465 (1) ◽  
pp. 111-122 ◽  
Author(s):  
Han-Seek Kim ◽  
J. Stuart. B. Wyithe ◽  
C. M. Baugh ◽  
C. d. P. Lagos ◽  
C. Power ◽  
...  
1980 ◽  
Vol 5 ◽  
pp. 197-204
Author(s):  
Robert H. Sanders

I want to discuss the origin of non-circular gas motions observed in the nuclei of normal spiral galaxies and the possibility that recurring violent activity in normal nuclei excites such motion. But first, let us review several basic aspects of the nearest normal galactic nucleus — the nucleus of our own Galaxy.The rotation curve as observed in the 21-cm line of neutral hydrogen gives some indication of the form of the gravitational field in the central region of the Galaxy. Figure 1 is a smooth fit to the rotation curve in the inner few kiloparsecs (solid line) taken essentially from the data of Rougoor and Oort (1960) and Simonson and Mader (1973). This rotation curve, within 1 kpc of the centre, is completely accounted for by the mass distribution implied by the extended 2.2-μ emission (Becklin and Neugebauer 1968, Oort 1971). Moreover, there is little doubt that this centrally condensed mass distribution should be identified with the bulge or spheroidal component of the Galaxy, because the spatial distribution of the 2.2-μ intensity is practically identical to the distribution of visible starlight in the bulge of M31 (Sandage, Becklin, and Neugebauer 1969). The conclusion is that the bulge overwhelmingly dominates the gravitational field inside of 1 kpc.


1959 ◽  
Vol 9 ◽  
pp. 366-369
Author(s):  
F. D. Drake

Observations of the neutral hydrogen content of the galactic clusters h and χ Persei, the Pleiades, the cluster in Coma Berenices, Praesepe, and M 67 have been made with the Harvard College Observatory 60-foot radio telescope. The receiver used was the original receiver made by the Ewen Knight Corporation for the Harvard 24-foot radio telescope. The observations were of three kinds: (1) right-ascension drift curves at 50 kc/s bandwidth, with the receiver fixed-tuned to the frequency of maximum cluster emission, if known, or to the frequency given by the cluster optical radial velocity; (2) conventional frequency profiles at the position of maximum cluster radiation; (3) “residual” frequency profiles, where there is significant general galactic radiation at the cluster frequency and position. These data provide the spatial distribution of any H i in the cluster vicinity that is in excess of the general galactic H i, and a frequency profile for this excess hydrogen. Any excess H i found is considered associated with the cluster if it agrees in velocity and position with the optical cluster.


2020 ◽  
Vol 499 (2) ◽  
pp. 1721-1746 ◽  
Author(s):  
Yuguang Chen(陈昱光) ◽  
Charles C Steidel ◽  
Cameron B Hummels ◽  
Gwen C Rudie ◽  
Bili Dong(董比立) ◽  
...  

ABSTRACT We present new measurements of the spatial distribution and kinematics of neutral hydrogen in the circumgalactic and intergalactic medium surrounding star-forming galaxies at z ∼ 2. Using the spectra of ≃3000 galaxies with redshifts 〈z〉 = 2.3 ± 0.4 from the Keck Baryonic Structure Survey, we assemble a sample of more than 200 000 distinct foreground-background pairs with projected angular separations of 3–500 arcsec and spectroscopic redshifts, with 〈zfg〉 = 2.23 and 〈zbg〉 = 2.57 (foreground, background redshifts, respectively.) The ensemble of sightlines and foreground galaxies is used to construct a 2D map of the mean excess $\rm{H\,{\small I}}$$\rm Ly\,\alpha$ optical depth relative to the intergalactic mean as a function of projected galactocentric distance (20 ≲ Dtran/pkpc ≲ 4000) and line-of-sight velocity. We obtain accurate galaxy systemic redshifts, providing significant information on the line-of-sight kinematics of $\rm{H\,{\small I}}$ gas as a function of projected distance Dtran. We compare the map with cosmological zoom-in simulation, finding qualitative agreement between them. A simple two-component (accretion, outflow) analytical model generally reproduces the observed line-of-sight kinematics and projected spatial distribution of $\rm{H\,{\small I}}$. The best-fitting model suggests that galaxy-scale outflows with initial velocity vout ≃ 600 km s$^{-1}\,$ dominate the kinematics of circumgalactic $\rm{H\,{\small I}}$ out to Dtran ≃ 50 kpc, while $\rm{H\,{\small I}}$ at Dtran ≳ 100 kpc is dominated by infall with characteristic vin ≲ circular velocity. Over the impact parameter range 80 ≲ Dtran/pkpc ≲ 200, the $\rm{H\,{\small I}}$ line-of-sight velocity range reaches a minimum, with a corresponding flattening in the rest-frame $\rm Ly\,\alpha$ equivalent width. These observations can be naturally explained as the transition between outflow-dominated and accretion-dominated flows. Beyond Dtran ≃ 300 pkpc (∼1 cMpc), the line-of-sight kinematics are dominated by Hubble expansion.


1967 ◽  
Vol 31 ◽  
pp. 265-278 ◽  
Author(s):  
A. Blaauw ◽  
I. Fejes ◽  
C. R. Tolbert ◽  
A. N. M. Hulsbosch ◽  
E. Raimond

Earlier investigations have shown that there is a preponderance of negative velocities in the hydrogen gas at high latitudes, and that in certain areas very little low-velocity gas occurs. In the region 100° <l< 250°, + 40° <b< + 85°, there appears to be a disturbance, with velocities between - 30 and - 80 km/sec. This ‘streaming’ involves about 3000 (r/100)2solar masses (rin pc). In the same region there is a low surface density at low velocities (|V| < 30 km/sec). About 40% of the gas in the disturbance is in the form of separate concentrations superimposed on a relatively smooth background. The number of these concentrations as a function of velocity remains constant from - 30 to - 60 km/sec but drops rapidly at higher negative velocities. The velocity dispersion in the concentrations varies little about 6·2 km/sec. Concentrations at positive velocities are much less abundant.


1967 ◽  
Vol 31 ◽  
pp. 239-251 ◽  
Author(s):  
F. J. Kerr

A review is given of information on the galactic-centre region obtained from recent observations of the 21-cm line from neutral hydrogen, the 18-cm group of OH lines, a hydrogen recombination line at 6 cm wavelength, and the continuum emission from ionized hydrogen.Both inward and outward motions are important in this region, in addition to rotation. Several types of observation indicate the presence of material in features inclined to the galactic plane. The relationship between the H and OH concentrations is not yet clear, but a rough picture of the central region can be proposed.


1967 ◽  
Vol 31 ◽  
pp. 171-172
Author(s):  
Th. Schmidt-Kaler

The integralNHof neutral-hydrogen density along the line of sight is determined from the Kootwijk and Sydney surveys. The run ofNHwith galactic longitude agrees well with that of thermal continuous radiation and that of the optical surface brightness of the Milky Way.


1967 ◽  
Vol 31 ◽  
pp. 41-43
Author(s):  
Th. Schmidt-Kaler ◽  
R. Schwartz

Neutral hydrogen is found in every young cluster observed, usually extending beyond the optical diameter, and in some cases showing expanding motions.


Sign in / Sign up

Export Citation Format

Share Document