scholarly journals The Kelvin–Helmholtz instability in the Orion nebula: the effect of radiation pressure

2017 ◽  
Vol 470 (3) ◽  
pp. 2559-2565
Author(s):  
S. Akram Yaghouti ◽  
Mohsen Nejad-Asghar ◽  
Shahram Abbassi
Author(s):  
Rikushi KATO ◽  
Masanori MATSUSHITA ◽  
Hideyuki TAKAHASHI ◽  
Osamu MORI ◽  
Nobukatsu OKUIZUMI ◽  
...  

2021 ◽  
Vol 33 (6) ◽  
pp. 064103
Author(s):  
Brian Romero ◽  
Svetlana V. Poroseva ◽  
Peter Vorobieff ◽  
Jon M. Reisner

2020 ◽  
Vol 501 (1) ◽  
pp. L12-L17
Author(s):  
Christina Schoettler ◽  
Richard J Parker

ABSTRACT Planetary systems appear to form contemporaneously around young stars within young star-forming regions. Within these environments, the chances of survival, as well as the long-term evolution of these systems, are influenced by factors such as dynamical interactions with other stars and photoevaporation from massive stars. These interactions can also cause young stars to be ejected from their birth regions and become runaways. We present examples of such runaway stars in the vicinity of the Orion Nebula Cluster (ONC) found in Gaia DR2 data that have retained their discs during the ejection process. Once set on their path, these runaways usually do not encounter any other dense regions that could endanger the survival of their discs or young planetary systems. However, we show that it is possible for star–disc systems, presumably ejected from one dense star-forming region, to encounter a second dense region, in our case the ONC. While the interactions of the ejected star–disc systems in the second region are unlikely to be the same as in their birth region, a second encounter will increase the risk to the disc or planetary system from malign external effects.


2006 ◽  
Vol 128 (6) ◽  
pp. 830-836 ◽  
Author(s):  
Yong-Ping Liu ◽  
Chuan Li ◽  
Kuo-Kang Liu ◽  
Alvin C. K. Lai

In this paper, the mechanical properties of erythrocytes were studied numerically based upon the mechanical model originally developed by Pamplona and Calladine (ASME J. Biomech. Eng., 115, p. 149, 1993) for liposomes. The case under study is the erythrocyte stretched by a pair of laser beams in opposite directions within buffer solutions. The study aims to elucidate the effect of radiation pressure from the optical laser because up to now little is known about its influence on the cell deformation. Following an earlier study by Guck et al. (Phys. Rev. Lett., 84, p. 5451, 2000; Biophys. J., 81, p. 767, 2001), the empirical results of the radiation pressure were introduced and imposed on the cell surface to simulate the real experimental situation. In addition, an algorithm is specially designed to implement the simulation. For better understanding of the radiation pressure on the cell deformation, a large number of simulations were conducted for different properties of cell membrane. Results are first discussed parametrically and then evaluated by comparing with the experimental data reported by Guck et al. An optimization approach through minimizing the errors between experimental and numerical data is used to determine the optimal values of membrane properties. The results showed that an average shear stiffness around 4.611×10-6Nm−1, when the nondimensional ratio of shear modulus to bending modulus ranges from 10 to 300. These values are in a good agreement with those reported in literature.


1991 ◽  
Vol 7 (Supple) ◽  
pp. 679-681
Author(s):  
TOSHIYUKI YAMAMOTO ◽  
TOHRU FUJII ◽  
TOMOKO MATSUI ◽  
TSUGUO SAWADA

Sign in / Sign up

Export Citation Format

Share Document