The Deformation of an Erythrocyte Under the Radiation Pressure by Optical Stretch

2006 ◽  
Vol 128 (6) ◽  
pp. 830-836 ◽  
Author(s):  
Yong-Ping Liu ◽  
Chuan Li ◽  
Kuo-Kang Liu ◽  
Alvin C. K. Lai

In this paper, the mechanical properties of erythrocytes were studied numerically based upon the mechanical model originally developed by Pamplona and Calladine (ASME J. Biomech. Eng., 115, p. 149, 1993) for liposomes. The case under study is the erythrocyte stretched by a pair of laser beams in opposite directions within buffer solutions. The study aims to elucidate the effect of radiation pressure from the optical laser because up to now little is known about its influence on the cell deformation. Following an earlier study by Guck et al. (Phys. Rev. Lett., 84, p. 5451, 2000; Biophys. J., 81, p. 767, 2001), the empirical results of the radiation pressure were introduced and imposed on the cell surface to simulate the real experimental situation. In addition, an algorithm is specially designed to implement the simulation. For better understanding of the radiation pressure on the cell deformation, a large number of simulations were conducted for different properties of cell membrane. Results are first discussed parametrically and then evaluated by comparing with the experimental data reported by Guck et al. An optimization approach through minimizing the errors between experimental and numerical data is used to determine the optimal values of membrane properties. The results showed that an average shear stiffness around 4.611×10-6Nm−1, when the nondimensional ratio of shear modulus to bending modulus ranges from 10 to 300. These values are in a good agreement with those reported in literature.

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Kristopher R. Schumacher ◽  
Aleksander S. Popel ◽  
Bahman Anvari ◽  
William E. Brownell ◽  
Alexander A. Spector

Cell membrane tethers are formed naturally (e.g., in leukocyte rolling) and experimentally to probe membrane properties. In cochlear outer hair cells, the plasma membrane is part of the trilayer lateral wall, where the membrane is attached to the cytoskeleton by a system of radial pillars. The mechanics of these cells is important to the sound amplification and frequency selectivity of the ear. We present a modeling study to simulate the membrane deflection, bending, and interaction with the cytoskeleton in the outer hair cell tether pulling experiment. In our analysis, three regions of the membrane are considered: the body of a cylindrical tether, the area where the membrane is attached and interacts with the cytoskeleton, and the transition region between the two. By using a computational method, we found the shape of the membrane in all three regions over a range of tether lengths and forces observed in experiments. We also analyze the effects of biophysical properties of the membrane, including the bending modulus and the forces of the membrane adhesion to the cytoskeleton. The model’s results provide a better understanding of the mechanics of tethers pulled from cell membranes.


2014 ◽  
Vol 47 (5) ◽  
pp. 1614-1625 ◽  
Author(s):  
Andrey A. Lomov ◽  
Vasily I. Punegov ◽  
Dusan Nohavica ◽  
Mikhail A. Chuev ◽  
Alexander L. Vasiliev ◽  
...  

X-ray reciprocal space mapping was used for quantitative investigation of porous layers in indium phosphide. A new theoretical model in the frame of the statistical dynamical theory for cylindrical pores was developed and applied for numerical data evaluation. The analysis of reciprocal space maps provided comprehensive information on a wide range of the porous layer parameters, for example, layer thickness and porosity, orientation, and correlation length of segmented pore structures. The results are in a good agreement with scanning electron microscopy data.


2022 ◽  
Author(s):  
Viola Introini ◽  
Alejandro Marin-Menendez ◽  
Guilherme Nettesheim ◽  
Yen-Chun Lin ◽  
Silvia N Kariuki ◽  
...  

Malaria parasites such as Plasmodium falciparum have exerted formidable selective pressures on the human genome. Of the human genetic variants associated with malaria protection, beta thalassaemia (a haemoglobinopathy) was the earliest to be associated with malaria prevalence. However, the malaria protective properties of beta thalassaemic erythrocytes remain unclear. Here we studied the mechanics and surface protein expression of beta thalassaemia heterozygous erythrocytes, measured their susceptibility to P. falciparum invasion, and calculated the energy required for merozoites to invade them. We found invasion-relevant differences in beta thalassaemic cells versus matched controls, specifically: elevated membrane tension, reduced bending modulus, and higher levels of expression of the major invasion receptor basigin. However, these differences acted in opposition to each other with respect to their likely impact on invasion, and overall we did not observe beta thalassaemic cells to have lower P. falciparum invasion efficiency for any of the strains tested.


2007 ◽  
Author(s):  
Κωνσταντίνος Τσιγκλιφής

The dynamic behavior and the fashion of collapse of a free bubble play a significant role in the phenomenon of single cavitation bubble luminescence (SCBL) and single bubble sono-luminescence (SBSL), in which light is emitted during its breakdown. In SCBL, the bubble is produced by the application of a laser pulse, in the host liquid, with a duration of 10⁻¹⁵ sec (femtosecond bubbles) and 10⁻⁹ sec (nanosecond bubbles). The resulting bubbles have size of the order of 5 and 500 μm, respectively. The femtosecond bubbles display severe elongation with regards to the axis of symmetry, while light is not emitted during their collapse. In contrast, the nanosecond bubbles exhibit almost spherosymmetric shape initially and collapse producing light. A parametric study is conducted on the fashion of collapse of bubbles, of various sizes, for weak or strong elongation and vanishing small or large internal overpressure, considering axisymmetric oscillations with weak viscous effects. Further, an effort is made to reproduce, as close as possible, respective SCBL and SBSL experiments, aiming to investigate the effect of the initial asymmetry on the fashion of collapse and the velocity of the resulting jet during collapse. Recently, a significant number of applications in diagnostic and therapeutic medicine use the ability of microbubbles, encapsulated by an elastic membrane (contrast agents), to reflect the ultrasound waves. Initially, a model that predicts the backscatter signal of the microbubble as a function of the membrane properties, of the host liquid and the width and the frequency of the acoustic disturbances, is presented. This model predicts with accuracy the effect of the non linear membrane constitutive law on the microbubble response for large acoustic disturbances in comparison to experimental measurements. The control of cohesion of microbubbles is desirable in several applications, such as in quantitative evaluation of heart blood flow (contrast perfusion imaging). In order to gain understanding regarding its cohesion range, the large-amplitude axisymmetric oscillation and collapse of an encapsulated microbubble is examined. The shear stresses that develop on the membrane due to the bending moments are accounted for, based on the shell stability theory, and are determined by the scalar bending modulus. This is a measure of the shell resistance to bending and is introduced as an additional parameter, due to the anisotropy of the membrane elasticity along the interface and perpendicular to it. With the help of stability analysis, it is feasible to estimate the range of the parameters for shape oscillations of the microbubble, as well as for the buckling of the shell. In combination with the model of the spherosymmetric oscillations, a theoretical tool is developed for the characterisation of a microbubble with regards to its membrane elasticity, bending resistance and viscosity. Phase diagrams are constructed where the regions of stable or unstable oscillation of a microbubble are defined. Finally, axisymmetric simulations of the interaction of the external flow field and the encapsulated microbubble are performed, implementing a hybrid boundary-finite element method, in order to determine the conditions under which a jet is created during the oscillation of the microbubble; a phenomenon which is observed when a microbubble oscillates near the walls of neighbouring tissues.


Author(s):  
M. Abdelgawad ◽  
I. Hassan ◽  
N. Esmail ◽  
P. Phutthavong

The viscous micropump consists of a cylinder placed eccentrically inside a microchannel, where the rotor axis is perpendicular to the channel axis. When the cylinder rotates, a net force is transferred to the fluid due to the unequal shear stresses on the upper and lower surfaces of the rotor. Consequently, this causes the surrounding fluid in the channel to displace towards the microchannel outlet. The simplicity of the viscous micropump renders it ideal for micro pumping, however, previous studies have shown that its performance is still less than what is required for various applications. The performance of the viscous micropump, in terms of flow rate, pressure head and efficiency, may be enhanced by implementing more than one rotor into the configuration. The present study will numerically investigate the performance of various configurations of the viscous micropumps with multiple rotors, namely the dual-horizontal rotor, the triple-horizontal rotor, the symmetrical-dual-vertical rotor, and the 8-shaped dual-vertical rotor. The development of drag force with time, as well as the viscous resisting torque on the cylinders were studied. In addition, the corresponding drag and moment coefficients were calculated. Results show that the symmetrical-dual-vertical rotor configuration yields the best efficiency, and generates the highest flow rate. The steady state performance of the single-stage micropump was compared with the available experimental and numerical data, and was found to be in very good agreement. This work provides a foundation for future research on the subject of fluid phenomena in viscous micropumps.


2019 ◽  
Vol 71 (6) ◽  
pp. 766-771 ◽  
Author(s):  
Xiuying Wang ◽  
Michael Khonsari ◽  
Siyuan Li ◽  
Qingwen Dai ◽  
Xiaolei Wang

Purpose This study aims to simultaneously enhance the load-carrying capacity and control the leakage rate of mechanical seals by optimizing the texture shape. Design/methodology/approach A multi-objective optimization approach is implemented to determine the optimal “free-form” textures and optimal circular dimples. Experiments are conducted to validate the simulation results. Findings The experimental coefficient of friction (COF) and leakage rate are in good agreement with the calculated results. In addition, the optimal “free-form” texture shows a lower COF and a lower leakage in most cases. Originality/value This work provides a method to optimize the surface texture for a better combination performance of mechanical seals.


Author(s):  
Qin Zhang ◽  
Peifeng Ma ◽  
Jing Liu ◽  
Rajeev Kumar Jaiman

The flow interaction between a dynamic positioning (DP) thruster and a floating structure (semi-submersible) hull attracted quite a lot of attention in recent years. In this study, the Spalart-Allmaras RANS model has been evaluated to simulate single thruster rotated in the open water with OpenFOAM. The actual thruster geometry has been meshed with structured grid, and the gap between the blade tip and nozzle is carefully treated. The Moving Reference Frame (MRF) method is used for steady-state simulation, and the arbitrary mesh interface (AMI) method is applied to simulate the rotating blade for transient dynamic mesh simulation. The numerical results are compared with available experimental and numerical data, especially in the wake flow. Good agreement is shown in this study.


2012 ◽  
Vol 504-506 ◽  
pp. 213-218 ◽  
Author(s):  
Walid Najjar ◽  
Xavier Legrand ◽  
Cedric Pupin ◽  
Philippe Dal Santo ◽  
Serge Boude

In this paper, a discrete approach for the simulation of the preforming of dry woven reinforcement is proposed. A “unit cell” is built using elastic isotropic shells and axial connectors instead of bars and beams used in previous studies. Shell elements are used to take into account the in-plane shear stiffness and to manage contact phenomenon with the punch and die. Connectors reinforce the structure in the yarn directions and naturally capture the specific behavior of the fabric. To identify the material parameters, uniaxial tensile tests and bias tests have been employed. A numerical algorithm, coupling Matlab and Abaqus/Explicit, is used to determine the shear parameters by an inverse method. The model has been implemented in Abaqus to simulate hemispherical stamping. Experimental results are compared to numerical simulations, good agreement between both results is shown.


Author(s):  
F. Sa´nchez Silva ◽  
J. A. Cruz Maya ◽  
A. Go´mez Mercado ◽  
G. Tolentino Eslava

A parametric study on determining discharge coefficient in ISO 9300 [1] toroidal sonic nozzles have been developed. The focus of this paper is to obtain the an analytical model for the calculus of this discharge coefficient on turbulent boundary layer conditions for gases at Pr = 0.7. The problem is divided in two sections: one in which the viscous stresses are taking in to account at boundary layer zone, based on turbulent boundary layer theory and taking as starting point the work carried out by Stratford [2]. Then, curvature of flow field is studied at the nucleus of the nozzle, obtaining discharge coefficient values using numerical simulation for a two-dimensional flow. The results have a good agreement with correlations of ISO-9300 [1], experimental and numerical data of Wu-Yan [3] and the analytical model from Stratford [2].


2005 ◽  
Vol 128 (2) ◽  
pp. 157-165 ◽  
Author(s):  
Peter M. Teertstra ◽  
M. Michael Yovanovich ◽  
J. Richard Culham

An analytical model is developed for natural convection from a single circuit board in a sealed electronic equipment enclosure. The circuit card is modeled as a vertical isothermal plate located at the center of an isothermal, cuboid shaped enclosure. A composite model is developed based on asymptotic solutions for three limiting cases: pure conduction, laminar boundary layer convection, and transition flow convection. The conduction shape factor and natural convection models are validated using data from CFD simulations for a wide range of enclosure geometries and flow conditions. The model is shown to be in good agreement, to within 10% RMS, with the numerical data for all test configurations.


Sign in / Sign up

Export Citation Format

Share Document