The effect of foot-point boundary conditions on transverse oscillations of cooling coronal loops

2017 ◽  
Vol 468 (3) ◽  
pp. 2781-2787 ◽  
Author(s):  
K. Bahari
2006 ◽  
Vol 11 (1) ◽  
pp. 47-78 ◽  
Author(s):  
S. Pečiulytė ◽  
A. Štikonas

The Sturm-Liouville problem with various types of two-point boundary conditions is considered in this paper. In the first part of the paper, we investigate the Sturm-Liouville problem in three cases of nonlocal two-point boundary conditions. We prove general properties of the eigenfunctions and eigenvalues for such a problem in the complex case. In the second part, we investigate the case of real eigenvalues. It is analyzed how the spectrum of these problems depends on the boundary condition parameters. Qualitative behavior of all eigenvalues subject to the nonlocal boundary condition parameters is described.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ji Lin ◽  
Yuhui Zhang ◽  
Chein-Shan Liu

AbstractFor nonlinear third-order three-point boundary value problems (BVPs), we develop two algorithms to find solutions, which automatically satisfy the specified three-point boundary conditions. We construct a boundary shape function (BSF), which is designed to automatically satisfy the boundary conditions and can be employed to develop new algorithms by assigning two different roles of free function in the BSF. In the first algorithm, we let the free functions be complete functions and the BSFs be the new bases of the solution, which not only satisfy the boundary conditions automatically, but also can be used to find solution by a collocation technique. In the second algorithm, we let the BSF be the solution of the BVP and the free function be another new variable, such that we can transform the BVP to a corresponding initial value problem for the new variable, whose initial conditions are given arbitrarily and terminal values are determined by iterations; hence, we can quickly find very accurate solution of nonlinear third-order three-point BVP through a few iterations. Numerical examples confirm the performance of the new algorithms.


2016 ◽  
Vol 591 ◽  
pp. L5 ◽  
Author(s):  
V. M. Nakariakov ◽  
S. A. Anfinogentov ◽  
G. Nisticò ◽  
D.-H. Lee

2018 ◽  
Vol 23 (5) ◽  
pp. 771-801 ◽  
Author(s):  
Rodica Luca

>We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann–Liouville fractional differential equations with parameters and p-Laplacian operator subject to multi-point boundary conditions, which contain fractional derivatives. The proof of our main existence results is based on the Guo–Krasnosel'skii fixed-point theorem.


Sign in / Sign up

Export Citation Format

Share Document