scholarly journals Destruction and multiple ionization of PAHs by X-rays in circumnuclear regions of AGNs

2019 ◽  
Vol 488 (1) ◽  
pp. 451-469 ◽  
Author(s):  
Thiago Monfredini ◽  
Heidy M Quitián-Lara ◽  
Felipe Fantuzzi ◽  
Wania Wolff ◽  
Edgar Mendoza ◽  
...  

ABSTRACT The infrared signatures of polycyclic aromatic hydrocarbons (PAHs) are observed in a variety of astrophysical objects, including the circumnuclear medium of active galactic nuclei (AGNs). These are sources of highly energetic photons (0.2–10 keV), exposing the PAHs to a harsh environment. In this work, we examined experimentally the photoionization and photostability of naphthalene (C10H8), anthracene (C14H10), 2-methyl-anthracene (C14H9CH3), and pyrene (C16H10) upon interaction with photons of 275, 310, and 2500 eV. The measurements were performed at the Brazilian Synchrotron Light Laboratory using time-of-flight mass-spectrometry. We determined the absolute photoionization and photodissociation cross-sections as a function of the incident photon energy; the production rates of singly, doubly, and triply charged ions; and the molecular half-lives in regions surrounding AGNs. Even considering moderate X-ray optical depth values (τ = 4.45) due to attenuation by the dusty torus, the half-lives are not long enough to account for PAH detection. Our results suggest that a more sophisticated interplay between PAHs and dust grains should be present in order to circumvent molecular destruction. We could not see any significant difference in the half-life values by increasing the size of the PAH carbon backbone, NC, from 10 to 16. However, we show that the multiple photoionization rates are significantly greater than the single ones, irrespective of the AGN source. We suggest that an enrichment of multiply charged ions caused by X-rays can occur in AGNs.

2008 ◽  
Vol 4 (S251) ◽  
pp. 369-370
Author(s):  
S. Pilling ◽  
D. P. P. Andrade ◽  
A. C. F. Santos ◽  
H. M. Boechat-Roberty

AbstractWe present experimental results obtained from photoionization and photodissociation processes of abundant interstellar methanol (CH3OH) as an alternative route for the production of H3+ in dense clouds. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS) employing soft X-ray and time-of-flight mass spectrometry. Mass spectra were obtained using the photoelectron-photoion coincidence techniques. Absolute averaged cross sections for the production of H3+ due to molecular dissociation of methanol by soft X-rays (C1s edge) were determined. The H3+'s photoproduction rate and column density were been estimated adopting a typical soft X-ray luminosity inside dense molecular and the observed column density of methanol. Assuming a steady state scenario, the highest column density value for the photoproduced H3+ was about 1011 cm2, which gives the ratio photoproduced/observed of about 0.05%, as in the case of dense molecular cloud AFGL 2591. Despite the small value, this represent a new and alternative source of H3+ into dense molecular clouds and it is not been considered as yet in interstellar chemistry models.


1984 ◽  
Vol 30 (2) ◽  
pp. 722-728 ◽  
Author(s):  
W. G. Graham ◽  
K. H. Berkner ◽  
R. V. Pyle ◽  
A. S. Schlachter ◽  
J. W. Stearns ◽  
...  

2017 ◽  
Vol 13 (S332) ◽  
pp. 418-424
Author(s):  
Marina G. Rachid ◽  
K. Faquine ◽  
S. Pilling

AbstractC2H4O2 isomers, methyl formate (HCOOCH3), acetic acid (CH3COOH) and glycoaldehyde (HOCH2CHO), have been detected in a lot of sources in ISM. However, their abundances are very different, with methyl formate much more abundant than the other two isomers. This fact may be related to the different destruction by ionizing radiation of these molecules. The goal of this work is experimentally study the photodissociation processes of methyl formate and acetic acid ices when exposed to broadband soft X-ray from 6 up to 2000 eV. The experiments were performed coupled to the SGM beamline in the Brazilian Synchrotron Light Source (LNLS/CNPEM) at Campinas, Brazil. The simulated astrophysical ices (12K) were monitored throughout the experiment using infrared vibrational spectroscopy. The analysis of processed ices allowed the determination of the effective destruction cross sections of the parent molecules as well as the effective formation cross section of daughter molecular species. The relative abundance between acetic acid and methyl formate (NCH3COOH/NHCOOCH3) in different astronomical scenarios and their column density evolution in the presence of X-rays were calculated and our results suggests that such radiation field can be one of the factors that explain the difference in the isomers C2H4O2 abundances. We also quantified the daugther species after the establishment of a chemical equilibrium in the samples.


1973 ◽  
Vol 6 (7) ◽  
pp. L171-L173 ◽  
Author(s):  
Y S Volodyagin ◽  
I S Dmitriev ◽  
V S Nikolaev ◽  
Y A Tashaev ◽  
Ya A Teplova

Sign in / Sign up

Export Citation Format

Share Document