The impact of star formation sampling effects on the spectra of lensed z > 6 galaxies detectable with JWST

2019 ◽  
Vol 492 (2) ◽  
pp. 1706-1712
Author(s):  
Anton Vikaeus ◽  
Erik Zackrisson ◽  
Christian Binggeli

ABSTRACT The upcoming James Webb Space Telescope (JWST) will allow observations of high-redshift galaxies at fainter detection levels than ever before, and JWST surveys targeting gravitationally lensed fields are expected to bring z ≳ 6 objects with very low star formation rate (SFR) within reach of spectroscopic studies. As galaxies at lower and lower star formation activity are brought into view, many of the standard methods used in the analysis of integrated galaxy spectra are at some point bound to break down, due to violation of the assumptions of a well-sampled stellar initial mass function (IMF) and a slowly varying SFR. We argue that galaxies with SFR ∼ 0.1 M⊙ yr−1 are likely to turn up at the spectroscopic detection limit of JWST in lensed fields, and investigate to what extent star formation sampling may affect the spectral analysis of such objects. We use the slug spectral synthesis code to demonstrate that such effects are likely to have significant impacts on spectral diagnostics of, for example, the Balmer emission lines. These effects are found to stem primarily from SFRs varying rapidly on short (∼Myr) time-scales due to star formation in finite units (star clusters), whereas the effects of an undersampled IMF is deemed insignificant in comparison. In contrast, the ratio between the He ii- and H i-ionizing flux is found to be sensitive to IMF-sampling as well as ICMF-sampling (sampling of the initial cluster mass function), which may affect interpretations of galaxies containing Population III stars or other sources of hard ionizing radiation.

Author(s):  
Christian Binggeli ◽  
Erik Zackrisson ◽  
Xiangcheng Ma ◽  
Akio K Inoue ◽  
Anton Vikaeus ◽  
...  

Abstract Photometric observations of the spectroscopically confirmed z ≈ 9.1 galaxy MACS1149-JD1 have indicated the presence of a prominent Balmer break in its spectral energy distribution, which may be interpreted as due to very large fluctuations in its past star formation activity. In this paper, we investigate to what extent contemporary simulations of high-redshift galaxies produce star formation rate variations sufficiently large to reproduce the observed Balmer break of MACS1149-JD1. We find that several independent galaxy simulations are unable to account for Balmer breaks of the inferred size, suggesting that MACS1149-JD1 either must be a very rare type of object or that our simulations are missing some key ingredient. We present predictions of spectroscopic Balmer break strength distributions for z ≈ 7–9 galaxies that may be tested through observations with the upcoming James Webb Space Telescope and also discuss the impact that various assumptions on dust reddening, Lyman continuum leakage and deviations from a standard stellar initial mass function would have on the results.


1986 ◽  
Vol 116 ◽  
pp. 101-102
Author(s):  
M. Kontizas ◽  
E. Kontizas

Photometric and recent spectroscopic studies of the SMC have shown that the differences observed in the SMC clusters and those of our Galaxy could be attibuted to differences in metallicity, star formation rate and/or the Initial Mass Function (IMF) (Humphries, 1983). The studied clusters NGC152 and KRON3 are located at the west side of the bar of the SMC and their adjoining fields represent the halo population of this galaxy.


2019 ◽  
Vol 489 (1) ◽  
pp. 487-496 ◽  
Author(s):  
Boyan K Stoychev ◽  
Keri L Dixon ◽  
Andrea V Macciò ◽  
Marvin Blank ◽  
Aaron A Dutton

ABSTRACT We use 38 high-resolution simulations of galaxy formation between redshift 10 and 5 to study the impact of a 3 keV warm dark matter (WDM) candidate on the high-redshift Universe. We focus our attention on the stellar mass function and the global star formation rate and consider the consequences for reionization, namely the neutral hydrogen fraction evolution and the electron scattering optical depth. We find that three different effects contribute to differentiate warm and cold dark matter (CDM) predictions: WDM suppresses the number of haloes with mass less than few 109 M⊙; at a fixed halo mass, WDM produces fewer stars than CDM, and finally at halo masses below 109 M⊙, WDM has a larger fraction of dark haloes than CDM post-reionization. These three effects combine to produce a lower stellar mass function in WDM for galaxies with stellar masses at and below 107 M⊙. For z > 7, the global star formation density is lower by a factor of two in the WDM scenario, and for a fixed escape fraction, the fraction of neutral hydrogen is higher by 0.3 at z ∼ 6. This latter quantity can be partially reconciled with CDM and observations only by increasing the escape fraction from 23 per cent to 34 per cent. Overall, our study shows that galaxy formation simulations at high redshift are a key tool to differentiate between dark matter candidates given a model for baryonic physics.


2019 ◽  
Vol 490 (4) ◽  
pp. 5359-5365 ◽  
Author(s):  
Stephen M Wilkins ◽  
Christopher C Lovell ◽  
Elizabeth R Stanway

ABSTRACT The calibrations linking observed luminosities to the star formation rate (SFR) depend on the assumed stellar population synthesis model, initial mass function, star formation and metal enrichment history, and whether reprocessing by dust and gas is included. Consequently the shape and normalization of the inferred cosmic star formation history is sensitive to these assumptions. Using v2.2.1 of the Binary Population and Spectral Synthesis (bpass) model we determine a new set of calibration coefficients for the ultraviolet, thermal infrared, and hydrogen recombination lines. These ultraviolet and thermal infrared coefficients are 0.15–0.2 dex higher than those widely utilized in the literature while the H α coefficient is ∼0.35 dex larger. These differences arise in part due to the inclusion binary evolution pathways but predominantly reflect an extension in the IMF to 300 M⊙ and a change in the choice of reference metallicity. We use these new coefficients to recalibrate the cosmic star formation history, and find improved agreement between the integrated cosmic star formation history and the in situ measured stellar mass density as a function of redshift. However, these coefficients produce new tension between SFR densities inferred from the ultraviolet and thermal infrared and those from H α.


2006 ◽  
Vol 2 (S237) ◽  
pp. 358-362
Author(s):  
M. K. Ryan Joung ◽  
Mordecai-Mark Mac Low

AbstractWe report on a study of interstellar turbulence driven by both correlated and isolated supernova explosions. We use three-dimensional hydrodynamic models of a vertically stratified interstellar medium run with the adaptive mesh refinement code Flash at a maximum resolution of 2 pc, with a grid size of 0.5 × 0.5 × 10 kpc. Cold dense clouds form even in the absence of self-gravity due to the collective action of thermal instability and supersonic turbulence. Studying these clouds, we show that it can be misleading to predict physical properties such as the star formation rate or the stellar initial mass function using numerical simulations that do not include self-gravity of the gas. Even if all the gas in turbulently Jeans unstable regions in our simulation is assumed to collapse and form stars in local freefall times, the resulting total collapse rate is significantly lower than the value consistent with the input supernova rate. The amount of mass available for collapse depends on scale, suggesting a simple translation from the density PDF to the stellar IMF may be questionable. Even though the supernova-driven turbulence does produce compressed clouds, it also opposes global collapse. The net effect of supernova-driven turbulence is to inhibit star formation globally by decreasing the amount of mass unstable to gravitational collapse.


Author(s):  
N. R. Tanvir ◽  
E. Le Floc’h ◽  
L. Christensen ◽  
J. Caruana ◽  
R. Salvaterra ◽  
...  

AbstractAt peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. Their bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at z > 6 in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond $z\gtrsim 6$ z ≳ 6 ; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.


2020 ◽  
Vol 494 (2) ◽  
pp. 2355-2373 ◽  
Author(s):  
M Palla ◽  
F Calura ◽  
F Matteucci ◽  
X L Fan ◽  
F Vincenzo ◽  
...  

ABSTRACT We study the effects of the integrated galactic initial mass function (IGIMF) and dust evolution on the abundance patterns of high redshift starburst galaxies. In our chemical models, the rapid collapse of gas clouds triggers an intense and rapid star formation episode, which lasts until the onset of a galactic wind, powered by the thermal energy injected by stellar winds and supernova explosions. Our models follow the evolution of several chemical elements (C, N, α-elements, and Fe) both in the gas and dust phases. We test different values of β, the slope of the embedded cluster mass function for the IGIMF, where lower β values imply a more top-heavy initial mass function (IMF). The computed abundances are compared to high-quality abundance measurements obtained in lensed galaxies and from composite spectra in large samples of star-forming galaxies in the redshift range 2 ≲ z ≲ 3. The adoption of the IGIMF causes a sensible increase of the rate of star formation with respect to a standard Salpeter IMF, with a strong impact on chemical evolution. We find that in order to reproduce the observed abundance patterns in these galaxies, either we need a very top-heavy IGIMF (β < 2) or large amounts of dust. In particular, if dust is important, the IGIMF should have β ≥ 2, which means an IMF slightly more top-heavy than the Salpeter one. The evolution of the dust mass with time for galaxies of different mass and IMF is also computed, highlighting that the dust amount increases with a top-heavier IGIMF.


2019 ◽  
Vol 488 (2) ◽  
pp. 2202-2221 ◽  
Author(s):  
Jason Jaacks ◽  
Steven L Finkelstein ◽  
Volker Bromm

ABSTRACT We utilize gizmo, coupled with newly developed sub-grid models for Population III (Pop III) and Population II (Pop II), to study the legacy of star formation in the pre-reionization Universe. We find that the Pop II star formation rate density (SFRD), produced in our simulation (${\sim } 10^{-2}\ \mathrm{M}_\odot \, {\rm yr^{-1}\, Mpc^{-3}}$ at z ≃ 10), matches the total SFRD inferred from observations within a factor of <2 at 7 ≲ z ≲ 10. The Pop III SFRD, however, reaches a plateau at ${\sim }10^{-3}\ \mathrm{M}_\odot \, {\rm yr^{-1}\, Mpc^{-3}}$ by z ≈ 10, remaining largely unaffected by the presence of Pop II feedback. At z  = 7.5, ${\sim } 20{{\ \rm per\ cent}}$ of Pop III star formation occurs in isolated haloes that have never experienced any Pop II star formation (i.e. primordial haloes). We predict that Pop III-only galaxies exist at magnitudes MUV ≳ −11, beyond the limits for direct detection with the James Webb Space Telescope. We assess that our stellar mass function (SMF) and UV luminosity function (UVLF) agree well with the observed low mass/faint-end behaviour at z = 8 and 10. However, beyond the current limiting magnitudes, we find that both our SMF and UVLF demonstrate a deviation/turnover from the expected power-law slope (MUV,turn = −13.4 ± 1.1 at z  = 10). This could impact observational estimates of the true SFRD by a factor of 2(10) when integrating to MUV = −12 (−8) at z ∼ 10, depending on integration limits. Our turnover correlates well with the transition from dark matter haloes dominated by molecular cooling to those dominated by atomic cooling, for a mass Mhalo ≈ 108 M⊙ at z ≃ 10.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 197-198
Author(s):  
Andrew J. Bunker

AbstractI discuss stellar populations in galaxies at high redshift (z > 6), in particular the blue rest-frame UV colours which have been detected in recent years through near-IR imaging with HST. These spectral slopes of β < −2 are much more blue than star-forming galaxies at lower redshift, and may suggest less dust obscuration, lower metallicity or perhaps a different initial mass function. I describe current work on the luminosity function of high redshift star- forming galaxies, the evolution of the fraction of strong Lyman-α emitters in this population, and the contribution of the ionizing photon budget from such galaxies towards the reionization of the Universe. I also describe constraints placed by Spitzer/IRAC on stellar populations in galaxies within the first billion years, and look towards future developments in spectroscopy with Extremely Large Telescopes and the James Webb Space Telescope, including the JWST/NIRSpec GTO programme on galaxy evolution at high redshift.


Sign in / Sign up

Export Citation Format

Share Document