scholarly journals Accretion of small satellites and gas inflows in a disc galaxy

2019 ◽  
Vol 491 (3) ◽  
pp. 3908-3922 ◽  
Author(s):  
F G Ramón-Fox ◽  
Héctor Aceves

ABSTRACT Galaxy interactions can have an important effect in a galaxy’s evolution. Cosmological models predict a large number of small satellites around galaxies. It is important to study the effect that these small satellites can have on the host. The present work explores the effect of small N-body spherical satellites with total mass ratios in the range ≈ 1:1000-1:100 in inducing gas flows to the central regions of a disc galaxy with late-type morphology resembling the Milky Way. Two model galaxies are considered: barred and non-barred models; the latter one is motivated in order to isolate and understand better the effects of the satellite. Several circular and non-circular orbits are explored, considering both prograde and retrogade orientations. We show that satellites with such small mass ratios can still produce observable distortions in the gas and stellar components of the galaxy. In terms of gas flows, the prograde circular orbits are more favourable for producing gas flows, where in some cases up to $60{{\ \rm per\ cent}}$ of the gas of the galaxy is driven to the central region. We find, hence, that small satellites can induce significant gas flows to the central regions of a disc galaxy, which is relevant in the context of fuelling active galactic nuclei.

2019 ◽  
Vol 15 (S359) ◽  
pp. 334-338
Author(s):  
Sandra I. Raimundo

AbstractThe galaxy Mrk 590 is one of the few known ‘changing-look’ Active Galactic Nuclei (AGN) to have transitioned between states twice, having just increased its flux after a period of ˜10 years of low activity. In addition to the increase in flux, the optical broad emission lines have reappeared but show a different profile than what was observed before they disappeared. The gas motions in the host galaxy of this changing-look AGN show outflows and dynamical structures able to drive gas to the nucleus, suggesting an interplay between inflow and outflow in the centre of the galaxy.


2010 ◽  
Vol 6 (S277) ◽  
pp. 246-249 ◽  
Author(s):  
Paola Di Matteo ◽  
Marco Montuori ◽  
Matthew D. Lehnert ◽  
Françcoise Combes ◽  
Benoit Semelin

AbstractIt has been known since many decades that galaxy interactions can induce star formation (hereafter SF) enhancements and that one of the driving mechanisms of this enhancement is related to gas inflows into the central galaxy regions, induced by asymmetries in the stellar component, like bars. In the last years many evidences have been accumulating, showing that interacting pairs have central gas-phase metallicities lower than those of field galaxies, by ~0.2–0.3 dex on average. These diluted ISM metallicities have been explained as the result of inflows of metal-poor gas from the outer disk to the galaxy central regions. A number of questions arises: What's the timing and the duration of this dilution? How and when does the SF induced by the gas inflow enrich the circum-nuclear gas with re-processed material? Is there any correlation between the timing and strength of the dilution and the timing and intensity of the SF? By means of Tree-SPH simulations of galaxy major interactions, we have studied the effect that gas inflows have on the ISM dilution, and the effect that the induced SF has, subsequently, in re-enriching the nuclear gas. In this contribution, we present the main results of this study.


2019 ◽  
Vol 28 (1) ◽  
pp. 213-219
Author(s):  
Elena Shablovinskaya ◽  
Viktor Afanasiev

Abstract Due to the compactness active galactic nuclei (AGN) are still unresolved with optical observations. However, structure and physical conditions of the matter in their central parts are especially important to study the processes of the matter accretion to supermassive black holes and eventually these investigations are essential to understand the galaxy evolution. Polarization contains information about the interaction of electromagnetic waves with the environment and provides information about the physical processes in the central regions of the AGNs that could not be found with the help of other optical observations. In this paper the importance of applying polarimetry methods to the study of geometry, kinematics, and physical processes in AGN in polarized light is discussed. An overview of the mechanisms of polarization formation, their connection with different structures and scales are provided. Also, we overview the polarimetric investigations based on different assumptions that are done using the observations conducted in Special Astrophysical Observatory of Russian Academy of Sciences.


2020 ◽  
Vol 499 (4) ◽  
pp. 5163-5174
Author(s):  
A Juráňová ◽  
N Werner ◽  
P E J Nulsen ◽  
M Gaspari ◽  
K Lakhchaura ◽  
...  

ABSTRACT X-ray emitting atmospheres of non-rotating early-type galaxies and their connection to central active galactic nuclei have been thoroughly studied over the years. However, in systems with significant angular momentum, processes of heating and cooling are likely to proceed differently. We present an analysis of the hot atmospheres of six lenticulars and a spiral galaxy to study the effects of angular momentum on the hot gas properties. We find an alignment between the hot gas and the stellar distribution, with the ellipticity of the X-ray emission generally lower than that of the optical stellar emission, consistent with theoretical predictions for rotationally supported hot atmospheres. The entropy profiles of NGC 4382 and the massive spiral galaxy NGC 1961 are significantly shallower than the entropy distribution in other galaxies, suggesting the presence of strong heating (via outflows or compressional) in the central regions of these systems. Finally, we investigate the thermal (in)stability of the hot atmospheres via criteria such as the TI- and C-ratio, and discuss the possibility that the discs of cold gas present in these objects have condensed out of the hot atmospheres.


2019 ◽  
Vol 15 (S356) ◽  
pp. 375-375
Author(s):  
Sarah White

AbstractLow-frequency radio emission allows powerful active galactic nuclei (AGN) to be selected in a way that is unaffected by dust obscuration and orientation of the jet axis. It also reveals past activity (e.g. radio lobes) that may not be evident at higher frequencies. Currently, there are too few “radio-loud” galaxies for robust studies in terms of redshift-evolution and/or environment. Hence our use of new observations from the Murchison Widefield Array (the SKA-Low precursor), over the southern sky, to construct the GLEAM 4-Jy Sample (1,860 sources at S151MHz > 4 Jy). This sample is dominated by AGN and is 10 times larger than the heavily relied-upon 3CRR sample (173 sources at S178MHz > 10 Jy) of the northern hemisphere. In order to understand how AGN influence their surroundings and the way galaxies evolve, we first need to correctly identify the galaxy hosting the radio emission. This has now been completed for the GLEAM 4-Jy Sample – through repeated visual inspection and extensive checks against the literature – forming a valuable, legacy dataset for investigating relativistic jets and their interplay with the environment.


1979 ◽  
Vol 84 ◽  
pp. 151-153
Author(s):  
James W-K. Mark ◽  
Linda Sugiyama ◽  
Robert H. Berman ◽  
Giuseppe Bertin

A concentrated nuclear bulge with about 30% of the galaxy mass is sufficient (Lin, 1975; Berman and Mark, 1978) to eliminate strong bar-forming instabilities which dominate the dynamics of the stellar disk. Weak bar-like or oval distortions might remain depending on the model. In such systems self-excited discrete modes give rise to global spiral patterns which are maintained in the presence of differential rotation and dissipation (cf. especially the spiral patterns in Bertin et al., 1977, 1978). These spiral modes are standing waves that are physically analyzable (Mark, 1977) into a superposition of two travelling waves propagating in opposite directions back and forth between galactic central regions and corotation (a resonator). Only a few discrete pattern frequencies are allowed. An interpretation is that the central regions and corotation radius must be sufficiently far apart so that a Bohr-Sommerfeld type of phase-integral condition is satisfied for the wave system of each mode. The temporal growth of these modes is mostly due to an effect of Wave Amplification by Stimulated Emission (of Rotating Spirals, abbrev. WASERS, cf. Mark 1976) which occurs in the vicinity of corotation. In some galaxies one mode might be predominent while other galaxies could exhibit more complicated spiral structure because several modes are present. Weak barlike or oval distortions hardly interfere with the structure of these modes. But they might nevertheless contribute partially towards strengthening the growth of one mode relative to another, as well as affecting the kinematics of the gaseous component.


2012 ◽  
Vol 8 (S292) ◽  
pp. 188-188
Author(s):  
J. R. Allison ◽  
E. M. Sadler ◽  
S. J. Curran ◽  
S. N. Reeves

AbstractRecent targeted studies of associated H i absorption in radio galaxies are starting to map out the location, and potential cosmological evolution, of the cold gas in the host galaxies of Active Galactic Nuclei (AGN). The observed 21 cm absorption profiles often show two distinct spectral-line components: narrow, deep lines arising from cold gas in the extended disc of the galaxy, and broad, shallow lines from cold gas close to the AGN (e.g. Morganti et al. 2011). Here, we present results from a targeted search for associated H i absorption in the youngest and most recently-triggered radio AGN in the local universe (Allison et al. 2012b). So far, by using the recently commissioned Australia Telescope Compact Array Broadband Backend (CABB; Wilson et al. 2011), we have detected two new absorbers and one previously-known system. While two of these show both a broad, shallow component and a narrow, deep component (see Fig. 1), one of the new detections has only a single broad, shallow component. Interestingly, the host galaxies of the first two detections are classified as gas-rich spirals, while the latter is an early-type galaxy. These detections were obtained using a spectral-line finding method, based on Bayesian inference, developed for future large-scale absorption surveys (Allison et al. 2012a).


2021 ◽  
Vol 502 (2) ◽  
pp. 2446-2473
Author(s):  
Peter Erwin ◽  
Anil Seth ◽  
Victor P Debattista ◽  
Marja Seidel ◽  
Kianusch Mehrgan ◽  
...  

ABSTRACT We present detailed morphological, photometric, and stellar-kinematic analyses of the central regions of two massive, early-type barred galaxies with nearly identical large-scale morphologies. Both have large, strong bars with prominent inner photometric excesses that we associate with boxy/peanut-shaped (B/P) bulges; the latter constitute ∼30 per cent of the galaxy light. Inside its B/P bulge, NGC 4608 has a compact, almost circular structure (half-light radius Re ≈ 310 pc, Sérsic n = 2.2) we identify as a classical bulge, amounting to 12.1 per cent of the total light, along with a nuclear star cluster (Re ∼ 4 pc). NGC 4643, in contrast, has a nuclear disc with an unusual broken-exponential surface-brightness profile (13.2 per cent of the light), and a very small spheroidal component (Re ≈ 35 pc, n = 1.6; 0.5 per cent of the light). IFU stellar kinematics support this picture, with NGC 4608’s classical bulge slowly rotating and dominated by high velocity dispersion, while NGC 4643’s nuclear disc shows a drop to lower dispersion, rapid rotation, V–h3 anticorrelation, and elevated h4. Both galaxies show at least some evidence for V–h3correlation in the bar (outside the respective classical bulge and nuclear disc), in agreement with model predictions. Standard two-component (bulge/disc) decompositions yield B/T ∼ 0.5–0.7 (and bulge n > 2) for both galaxies. This overestimates the true ‘spheroid’ components by factors of 4 (NGC 4608) and over 100 (NGC 4643), illustrating the perils of naive bulge-disc decompositions applied to massive barred galaxies.


New Astronomy ◽  
2019 ◽  
Vol 68 ◽  
pp. 20-24 ◽  
Author(s):  
Diana P. Kjurkchieva ◽  
Velimir A. Popov ◽  
Nikola I. Petrov
Keyword(s):  

2009 ◽  
Vol 5 (S267) ◽  
pp. 273-282
Author(s):  
Andrew King

AbstractI review accretion and outflow in active galactic nuclei. Accreti4on appears to occur in a series of very small-scale, chaotic events, whose gas flows have no correlation with the large-scale structure of the galaxy or with each other. The accreting gas has extremely low specific angular momentum and probably represents only a small fraction of the gas involved in a galaxy merger, which may be the underlying driver.Eddington accretion episodes in AGN must be common in order for the supermassive black holes to grow. I show that they produce winds with velocities v ~ 0.1c and ionization parameters implying the presence of resonance lines of helium-like and hydrogen-like iron. The wind creates a strong cooling shock as it interacts with the interstellar medium of the host galaxy, and this cooling region may be observable in an inverse Compton continuum and lower-excitation emission lines associated with lower velocities. The shell of matter swept up by the shocked wind stalls unless the black hole mass has reached the value Mσ implied by the M–σ relation. Once this mass is reached, further black hole growth is prevented. If the shocked gas did not cool as asserted above, the resulting (“energy-driven”) outflow would imply a far smaller SMBH mass than actually observed. Minor accretion events with small gas fractions can produce galaxy-wide outflows, including fossil outflows in galaxies where there is little current AGN activity.


Sign in / Sign up

Export Citation Format

Share Document