scholarly journals Quasi-simultaneous radio and X-ray observations of Aql X-1 : probing low luminosities

2019 ◽  
Vol 492 (2) ◽  
pp. 2858-2871 ◽  
Author(s):  
N V Gusinskaia ◽  
J W T Hessels ◽  
N Degenaar ◽  
A T Deller ◽  
J C A Miller-Jones ◽  
...  

ABSTRACT Aql X-1 is one of the best-studied neutron star low-mass X-ray binaries. It was previously targeted using quasi-simultaneous radio and X-ray observations during at least seven different accretion outbursts. Such observations allow us to probe the interplay between accretion inflow (X-ray) and jet outflow (radio). Thus far, these combined observations have only covered one order of magnitude in radio and X-ray luminosity range; this means that any potential radio–X-ray luminosity correlation, LR ∝ LXβ, is not well constrained (β ≈ 0.4–0.9, based on various studies) or understood. Here we present quasi-simultaneous Very Large Array and Swift-XRT observations of Aql X-1’s 2016 outburst, with which we probe one order of magnitude fainter in radio and X-ray luminosity compared to previous studies (6 × 1034 erg s−1 < LX <3 × 1035 erg s−1, i.e. the intermediate to low-luminosity regime between outburst peak and quiescence). The resulting radio non-detections indicate that Aql X-1’s radio emission decays more rapidly at low X-ray luminosities than previously assumed – at least during the 2016 outburst. Assuming similar behaviour between outbursts, and combining all available data in the hard X-ray state, this can be modelled as a steep β =$1.17^{+0.30}_{-0.21}$ power-law index or as a sharp radio cut-off at LX ≲ 5 × 1035 erg s−1 (given our deep radio upper limits at X-ray luminosities below this value). We discuss these results in the context of other similar studies.

Author(s):  
R Pattnaik ◽  
K Sharma ◽  
K Alabarta ◽  
D Altamirano ◽  
M Chakraborty ◽  
...  

Abstract Low Mass X-ray binaries (LMXBs) are binary systems where one of the components is either a black hole or a neutron star and the other is a less massive star. It is challenging to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the last few decades, multiple observational works have tried, with different levels of success, to address this problem. In this paper, we explore the use of machine learning to tackle this observational challenge. We train a random forest classifier to identify the type of compact object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the spectra of LMXB sources. We further use the trained model for predicting the classes for LMXB systems with unknown or ambiguous classification. With the ever-increasing volume of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT, XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster and robust classification of X-ray sources and can also be deployed as part of the data reduction pipeline.


1987 ◽  
Vol 125 ◽  
pp. 199-199
Author(s):  
J. Shaham ◽  
M. Tavani

Spectral observations of low-mass X-ray binaries (LMXBs) show that the soft component usually dominates over the hard one. These results provide additional support to an interpretation based on models of LMXBs in which the neutron star while, on the average, spinning up, is also experiencing a spinning down torque. Under these conditions, a fraction of the luminosity associated with the gravitational release of energy on the surface of the accreting neutron star may manifest itself as luminosity originating in the inner part of the accretion disk. It is probably possible to separate the two contributions; the stellar luminosity can be associated with the hard component of the spectrum and the disk luminosity, related to the exchange of energy due to the torque between the rapidly spinning neutron star and the accretion disk, can be associated with the soft spectral component.


1998 ◽  
Vol 188 ◽  
pp. 111-111
Author(s):  
Walter H.G. Lewin

The bursts from GRO J1744-28 are due to accretion instabilities as is the case for type II bursts in the Rapid Burster. Both sources are transient Low-Mass X-ray Binaries, and they both exhibit unusual quasi-periodic-oscillations in their persistent X-ray flux following several (not all) of the type II bursts. There are important differences too. GRO J1744-28 is an X-ray pulsar; the Rapid Burster is not. In addition, the pattern of bursts and the burst peak luminosities are very different for the two sources. Time intervals between the rapidly repetitive bursts in the Rapid Burster can be as short as 10 sec, in 1744-28 they are as short as 200 sec. The peak luminosities of the bursts from GRO J1744-28 can exceed the Eddington luminosity (for assumed isotropic emission) by one to two orders of magnitude. The QPO centroid frequencies (see above) differ by an order of magnitude (~0.04 Hz for the Rapid Burster, and 0.3 Hz for GRO J1744-28). The difference in behavior p obably lies in the difference in the magnetic dipole field strength of the accreting neutron stars (for GRO J1744-28 it is almost certainly much higher than for the Rapid Burster). It remains puzzling, why GRO J1744-28 and the Rapid Burster are the only known sources which exhibit rapidly repetitive type II bursts.


1998 ◽  
Vol 501 (1) ◽  
pp. L95-L99 ◽  
Author(s):  
Dimitrios Psaltis ◽  
Mariano Méndez ◽  
Rudy Wijnands ◽  
Jeroen Homan ◽  
Peter G. Jonker ◽  
...  

2019 ◽  
Vol 491 (3) ◽  
pp. 3245-3250
Author(s):  
P Chris Fragile

ABSTRACT Across black hole (BH) and neutron star (NS) low-mass X-ray binaries (LMXBs), there appears to be some correlation between certain high- and low-frequency quasi-periodic oscillations (QPOs). In a previous paper, we showed that for BH LMXBs, this could be explained by the simultaneous oscillation and precession of a hot, thick, torus-like corona. In the current work, we extend this idea to NS LMXBs by associating the horizontal branch oscillations (HBOs) with precession and the upper-kiloHertz (ukHz) QPO with vertical epicyclic motion. For the Atoll source 4U 1608-52, the model can match many distinct, simultaneous observations of the HBO and ukHz QPO by varying the inner and outer radius of the torus, while maintaining fixed values for the mass (MNS) and spin (a*) of the NS. The best-fitting values are MNS = 1.38 ± 0.03 M⊙ and a* = 0.325 ± 0.005. By combining these constraints with the measured spin frequency, we are able to obtain an estimate for the moment of inertia of INS = 1.40 ± 0.02 × 1045 g cm2, which places constraints on the equation of state. The model is unable to fit the lower-kHz QPO, but evidence suggests that QPO may be associated with the boundary layer between the accretion flow and the NS surface, which is not treated in this work.


2014 ◽  
Vol 335 (2) ◽  
pp. 168-177 ◽  
Author(s):  
D. H. Wang ◽  
L. Chen ◽  
C. M. Zhang ◽  
Y. J. Lei ◽  
J. L. Qu

2004 ◽  
Vol 194 ◽  
pp. 206-206
Author(s):  
M. Bałucińska-Church ◽  
M. J. Church ◽  
G. Halai ◽  
A. Szostek

The explanation of the strong physical changes clearly taking place in the Z-track class of Low Mass X-ray Binaries has so far not been obtained, and this remains a significant astrophysical problem, without which we cannot claim to understand accretion in LMXB. We have for the first time applied the Birmingham emission model (2,3) to this problem to attempt to obtain a solution from the spectral evolution along the Z-track in the source GX 340+0 observed with Rossi- ХTE. In this model, X-ray emission consists of blackbody from the neutron star, plus Comptonized emission from an extended ADC.


2018 ◽  
Vol 14 (S346) ◽  
pp. 193-196
Author(s):  
Swetlana Hubrig ◽  
Lara Sidoli ◽  
Konstantin A. Postnov ◽  
Markus Schöller ◽  
Alexander F. Kholtygin ◽  
...  

Abstract. A fraction of high-mass X-ray binaries are supergiant fast X-ray transients. These systems have on average low X-ray luminosities, but display short flares during which their X-ray luminosity rises by a few orders of magnitude. The leading model for the physics governing this X-ray behaviour suggests that the winds of the donor OB supergiants are magnetized. In agreement with this model, the first spectropolarimetric observations of the SFXT IGR J11215-5952 using the FORS 2 instrument at the Very Large Telescope indicate the presence of a kG longitudinal magnetic field. Based on these results, it seems possible that the key difference between supergiant fast X-ray transients and other high-mass X-ray binaries are the properties of the supergiant’s stellar wind and the physics of the wind’s interaction with the neutron star magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document