scholarly journals A parallel-GPU code for asteroid aggregation problems with angular particles

2019 ◽  
Vol 492 (1) ◽  
pp. 749-761 ◽  
Author(s):  
Fabio Ferrari ◽  
Michèle Lavagna ◽  
Emmanuel Blazquez

ABSTRACT The paper presents a numerical implementation of the gravitational N-body problem with contact interactions between non-spherically shaped bodies. The work builds up on a previous implementation of the code and extends its capabilities. The number of bodies handled is significantly increased through the use of a CUDA/GPU-parallel octree structure. The implementation of the code is discussed and its performance is compared against direct N2 integration. The code features both smooth (force-based) and non-smooth (impulse-based) methods, as well as a visco-elastic non-smooth method, to handle contact interaction between bodies. The numerical problem of simulating ‘rubble-pile’ asteroid gravitational aggregation processes is addressed. We discuss the features of the problem and derive criteria to set up the numerical simulation from the dynamical constraints of the combined gravitational–collisional problem. Examples of asteroid aggregation scenarios that could benefit from such implementation are finally presented.

Author(s):  
Tanya Schmah ◽  
Cristina Stoica

Using geometric mechanics methods, we examine aspects of the dynamics of n mass points in R 4 with a general pairwise potential. We investigate the central force problem, set up the n -body problem and discuss certain properties of relative equilibria. We describe regular n -gons in R 4 , and when the masses are equal we determine the invariant manifold of motions with regular n -gon configurations. In the case n  = 3, we reduce the dynamics to a 6 d.f. system and we show that for generic potentials and momenta, relative equilibria with equilateral configuration are unstable. This article is part of the theme issue ‘Topological and geometrical aspects of mass and vortex dynamics’.


2012 ◽  
Vol 538-541 ◽  
pp. 725-729
Author(s):  
Han Ming Liu ◽  
Heng Zhao ◽  
Ning Li

In lifting, remoted operated dive vehicle(ROV) may swing with the effect of wave. Based on the general form of Lagrange’s equation, a 3-DOF nonlinear swing motion kinematic model was set up. The kinematic response was studied using methods of numerical simulation. The results demonstrated that the kinematic response depends on the length of cable, lifting speed and excitation frequency. Conclusions drawn from this work can be used for safety assessment and theoretical basis for lifting ROV.


PAMM ◽  
2013 ◽  
Vol 13 (1) ◽  
pp. 33-34
Author(s):  
Odysseas Kosmas ◽  
Sigrid Leyendecker

2021 ◽  
Author(s):  
Ramtin Sabeti ◽  
Mohammad Heidarzadeh

<p>Landslide-generated waves have been major threats to coastal areas and have led to destruction and casualties. Their importance is undisputed, most recently demonstrated by the 2018 Anak Krakatau tsunami, causing several hundred fatalities. The accurate prediction of the maximum initial amplitude of landslide waves (<em>η<sub>max</sub></em>) around the source region is a vital hazard indicator for coastal impact assessment. Laboratory experiments, analytical solutions and numerical modelling are three major methods to investigate the (<em>η<sub>max</sub></em>). However, the numerical modelling approach provides a more flexible and cost- and time-efficient tool. This research presents a numerical simulation of tsunamis due to rigid landslides with consideration of submerged conditions. In particular, this simulation focuses on studying the effect of landslide parameters on <em>η<sub>max</sub>.</em> Results of simulations are compared with our conducted physical experiments at the Brunel University London (UK) to validate the numerical model.</p><p>We employ the fully three-dimensional computational fluid dynamics package, FLOW-3D Hydro for modelling the landslide-generated waves. This software benefit from the Volume of Fluid Method (VOF) as the numerical technique for tracking and locating the free surface. The geometry of the simulation is set up according to the wave tank of physical experiments (i.e. 0.26 m wide, 0.50 m deep and 4.0 m). In order to calibrate the simulation model based on the laboratory measurements, the friction coefficient between solid block and incline is changed to 0.41; likewise, the terminal velocity of the landslide is set to 0.87 m/s. Good agreement between the numerical solutions and the experimental results is found. Sensitivity analyses of landslide parameters (e.g. slide volume, water depth, etc.) on <em>η<sub>max </sub></em>are performed. Dimensionless parameters are employed to study the sensitivity of the initial landslide waves to various landslide parameters.</p>


2013 ◽  
Vol 860-863 ◽  
pp. 1416-1419
Author(s):  
Ri Guang Wei ◽  
Zhen Xiao Qu ◽  
Jian Qiang Gao

According to the structure and working principle of rotary air preheater,the heat transfer calculation model is set up with reasonable simplification. Combining with the design parameters of the rotary air preheater of a 400 t/h pulverized coal boiler unit ,the results of practical calculation show that the said thermodynamic calculation method not only has higher precision of calculation,but also can get the temperature distributions of the gas, air and heat surface in each cross-section of the rotary air preheater. The result of numerical simulation calculation tallies well with the original designed data. It can be used for the heat calculation both two-sectorial and three-sectorial air heater; it can be used for performance analysis of the regenerative air heater.


Sign in / Sign up

Export Citation Format

Share Document