scholarly journals Violent buckling benefits galactic bars

2019 ◽  
Vol 492 (2) ◽  
pp. 2241-2249 ◽  
Author(s):  
Angela Collier

ABSTRACT Galactic bars are unstable to a vertical buckling instability which heats the disc and in some cases forms a boxy/peanut shaped bulge. We analyse the buckling instability as an application of classical Euler buckling followed by non-linear gravitational Landau damping in the collisionless system. We find that the buckling instability is dictated by the kinematic properties and geometry of the bar. The analytical result is compared to simulations of isolated galaxies containing the disc and dark matter components. Our results demonstrate that violent buckling does not destroy bars while a less energetic buckling can dissolve the bar. The discs that undergo gentle buckling remain stable to bar formation which may explain the observed bar fraction in the local Universe. Our results align with the results from recent surveys.

2010 ◽  
Vol 726 (1) ◽  
pp. L6 ◽  
Author(s):  
A. J. Cuesta ◽  
T. E. Jeltema ◽  
F. Zandanel ◽  
S. Profumo ◽  
F. Prada ◽  
...  
Keyword(s):  

2015 ◽  
Vol 578 ◽  
pp. A110 ◽  
Author(s):  
M. Argudo-Fernández ◽  
S. Verley ◽  
G. Bergond ◽  
S. Duarte Puertas ◽  
E. Ramos Carmona ◽  
...  

2020 ◽  
Vol 500 (3) ◽  
pp. 3776-3801
Author(s):  
Wenting Wang ◽  
Masahiro Takada ◽  
Xiangchong Li ◽  
Scott G Carlsten ◽  
Ting-Wen Lan ◽  
...  

ABSTRACT We conduct a comprehensive and statistical study of the luminosity functions (LFs) for satellite galaxies, by counting photometric galaxies from HSC, DECaLS, and SDSS around isolated central galaxies (ICGs) and paired galaxies from the SDSS/DR7 spectroscopic sample. Results of different surveys show very good agreement. The satellite LFs can be measured down to MV ∼ −10, and for central primary galaxies as small as 8.5 < log10M*/M⊙ < 9.2 and 9.2 < log10M*/M⊙ < 9.9, which implies there are on average 3–8 satellites with MV < −10 around LMC-mass ICGs. The bright end cutoff of satellite LFs and the satellite abundance are both sensitive to the magnitude gap between the primary and its companions, indicating galaxy systems with larger magnitude gaps are on average hosted by less massive dark matter haloes. By selecting primaries with stellar mass similar to our Milky Way (MW), we discovered that (i) the averaged satellite LFs of ICGs with different magnitude gaps to their companions and of galaxy pairs with different colour or colour combinations all show steeper slopes than the MW satellite LF; (ii) there are on average more satellites with −15 < MV < −10 than those in our MW; (iii) there are on average 1.5 to 2.5 satellites with MV < −16 around ICGs, consistent with our MW; (iv) even after accounting for the large scatter predicted by numerical simulations, the MW satellite LF is uncommon at MV > −12. Hence, the MW and its satellite system are statistically atypical of our sample of MW-mass systems. In consequence, our MW is not a good representative of other MW-mass galaxies. Strong cosmological implications based on only MW satellites await additional discoveries of fainter satellites in extra-galactic systems. Interestingly, the MW satellite LF is typical among other MW-mass systems within 40 Mpc in the local Universe, perhaps implying the Local Volume is an underdense region.


2014 ◽  
Vol 10 (S306) ◽  
pp. 258-261
Author(s):  
Metin Ata ◽  
Francisco-Shu Kitaura ◽  
Volker Müller

AbstractWe study the statistical inference of the cosmological dark matter density field from non-Gaussian, non-linear and non-Poisson biased distributed tracers. We have implemented a Bayesian posterior sampling computer-code solving this problem and tested it with mock data based onN-body simulations.


2016 ◽  
Vol 456 (4) ◽  
pp. 4247-4255 ◽  
Author(s):  
Steffen Heß ◽  
Francisco-Shu Kitaura

Abstract In this work, we investigate the impact of cosmic flows and density perturbations on Hubble constant H0 measurements using non-linear phase–space reconstructions of the Local Universe (LU). In particular, we rely on a set of 25 precise constrained N-body simulations based on Bayesian initial conditions reconstructions of the LU using the Two-Micron Redshift Survey galaxy sample within distances of about 90  h−1 Mpc. These have been randomly extended up to volumes enclosing distances of 360  h−1 Mpc with augmented Lagrangian perturbation theory (750 simulations in total), accounting in this way for gravitational mode coupling from larger scales, correcting for periodic boundary effects, and estimating systematics of missing attractors (σlarge = 134  s−1 km). We report on Local Group (LG) speed reconstructions, which for the first time are compatible with those derived from cosmic microwave background-dipole measurements: |vLG| = 685 ± 137  s−1 km. The direction (l, b) = (260$_{.}^{\circ}$5 ± 13$_{.}^{\circ}$3, 39$_{.}^{\circ}$1 ± 10$_{.}^{\circ}$4) is found to be compatible with the observations after considering the variance of large scales. Considering this effect of large scales, our local bulk flow estimations assuming a Λ cold dark matter model are compatible with the most recent estimates based on velocity data derived from the Tully–Fisher relation. We focus on low-redshift supernova measurements out to 0.01 < z < 0.025, which have been found to disagree with probes at larger distances. Our analysis indicates that there are two effects related to cosmic variance contributing to this tension. The first one is caused by the anisotropic distribution of supernovae, which aligns with the velocity dipole and hence induces a systematic boost in H0. The second one is due to the inhomogeneous matter fluctuations in the LU. In particular, a divergent region surrounding the Virgo Supercluster is responsible for an additional positive bias in H0. Taking these effects into account yields a correction of ΔH0 = -1.76 ± 0.21  s− 1 km Mpc− 1, thereby reducing the tension between local probes and more distant probes. Effectively H0 is lower by about 2 per cent.


1970 ◽  
Vol 4 (4) ◽  
pp. 819-824
Author(s):  
F. Einaudi ◽  
W. I. Axford

In this note we comment and extend the results of a previous analysis in which the non-linear behaviour of one-dimensional electrostatic oscillations in a homogeneous, unbounded, collisionless and fully ionized plasma was considered. The evolution of a monochromatic wave of small, but finite amplitude is studied by expanding the dependent variables as well as the independent variable tin the form of asymptotic series; an ordering parameter e proportional to the initial amplitude of the electric field is introduced. The expansion of the independent variable in such a series allows us to eliminate secular terms from the part of the distribution function which does not depend on the free-streaming terms. This, in turn, allows us to determine corrections to the complex frequency a. Results of a previous note on non-linear Landau damping for an initially Maxwellian. distribution function are confirmed, but it is indicated that they apply to values of time up to a value τ1 rather than for all times. One can proceed to larger values of time in the manner of the multiple time-scale method. In particular it is found that the Landau damping is increased with respect to the linear value only initially during the first time scale.


2005 ◽  
Vol 635 (2) ◽  
pp. 982-989 ◽  
Author(s):  
Charlie Conroy ◽  
Jeffrey A. Newman ◽  
Marc Davis ◽  
Alison L. Coil ◽  
Renbin Yan ◽  
...  

1987 ◽  
Vol 117 ◽  
pp. 367-367
Author(s):  
Rosemary F. G. Wyse ◽  
Bernard J. T. Jones

We present a simple model for the formation of elliptical galaxies, based on a binary clustering hierarchy of dark matter, the chemical enrichment of the gas at each level being controlled by supernovae. The initial conditions for the non-linear phases of galaxy formation are set by the post-recombination power spectrum of density fluctuations. We investigate two models for this power spectrum - the first is a straightforward power law, |δk|2 ∝ kn, and the second is Peeble's analytic approximation to the emergent spectrum in a universe dominated by cold dark matter. The normalisation is chosen such that on some scale, say M ∼ 1012M⊙, the objects that condense out have properties - radius and velocity dispersion - resembling ‘typical’ galaxies. There is some ambiguity in this due to the poorly determined mass-to-light ratio of a typical elliptical galaxy — we look at two normalisations, σ1D ∼ 350kms−1 and σ1D ∼ 140kms−1. The choice determines which of Compton cooling or hydrogen cooling is more important during the galaxy formation period. The non-linear behaviour of the perturbations is treated by the homogeneous sphere approximation.


2020 ◽  
Vol 500 (3) ◽  
pp. 3162-3177
Author(s):  
Jurek B Bauer ◽  
David J E Marsh ◽  
Renée Hložek ◽  
Hamsa Padmanabhan ◽  
Alex Laguë

ABSTRACT We consider intensity mapping (IM) of neutral hydrogen (H i) in the redshift range 0 ≲ z ≲ 3 employing a halo model approach where H i is assumed to follow the distribution of dark matter (DM) haloes. If a portion of the DM is composed of ultralight axions, then the abundance of haloes is changed compared to cold DM below the axion Jeans mass. With fixed total H i density, $\Omega _{\rm H\, \rm {\small I}}$, assumed to reside entirely in haloes, this effect introduces a scale-independent increase in the H i power spectrum on scales above the axion Jeans scale, which our model predicts consistent with N-body simulations. Lighter axions introduce a scale-dependent feature even on linear scales due to its suppression of the matter power spectrum near the Jeans scale. We use the Fisher matrix formalism to forecast the ability of future H i surveys to constrain the axion fraction of DM and marginalize over astrophysical and model uncertainties. We find that a HIRAX-like survey is a very reliable IM survey configuration, being affected minimally by uncertainties due to non-linear scales, while the SKA1MID configuration is the most constraining as it is sensitive to non-linear scales. Including non-linear scales and combining a SKA1MID-like IM survey with the Simons Observatory CMB, the benchmark ‘fuzzy DM’ model with ma = 10−22 eV can be constrained at few per cent. This is almost an order of magnitude improvement over current limits from the Ly α forest. For lighter ULAs, this limit improves below 1 per cent, and allows the possibility to test the connection between axion models and the grand unification scale across a wide range of masses.


Sign in / Sign up

Export Citation Format

Share Document