Observational evidence for dark matter from peculiar velocities in the local Universe

1991 ◽  
Author(s):  
Ofer Lahav
1996 ◽  
Vol 168 ◽  
pp. 175-182 ◽  
Author(s):  
D.S. Mathewson ◽  
V.L. Ford

Peculiar velocity measurements of 2500 southern spiral galaxies show large-scale flows in the direction of the Hydra-Centaurus clusters which fully participate in the flow themselves. The flow is not uniform over this region and seems to be associated with the denser regions which participate in the flow of amplitude about 400km/s. In the less dense regions the flow is small or non-existent. This makes the flow quite asymmetric and inconsistent with that expected from large-scale, parallel streaming flow that includes all galaxies out to 6000km/s as previously thought. The flow cannot be modelled by a Great Attractor at 4300km/s or the Centaurus clusters at 3500km/s. Indeed, from the density maps derived from the redshift surveys of “optical” and IRAS galaxies, it is difficult to see how the mass concentrations can be responsible particularly as they themselves participate in the flow. These results bring into question the generally accepted reason for the peculiar velocities of galaxies that they arise solely as a consequence of infall into the dense regions of the universe. To the N. of the Great Attractor region, the flow increases and shows no sign of diminishing out to the redshift limit of 8000km/s in this direction. We may have detected flow in the nearest section of the Great Wall.


2020 ◽  
Vol 500 (1) ◽  
pp. 310-318
Author(s):  
Roberto De Propris ◽  
Michael J West ◽  
Felipe Andrade-Santos ◽  
Cinthia Ragone-Figueroa ◽  
Elena Rasia ◽  
...  

ABSTRACT We explore the persistence of the alignment of brightest cluster galaxies (BCGs) with their local environment. We find that a significant fraction of BCGs do not coincide with the centroid of the X-ray gas distribution and/or show peculiar velocities (they are not at rest with respect to the cluster mean). Despite this, we find that BCGs are generally aligned with the cluster mass distribution even when they have significant offsets from the X-ray centre and significant peculiar velocities. The large offsets are not consistent with simple theoretical models. To account for these observations BCGs must undergo mergers preferentially along their major axis, the main infall direction. Such BCGs may be oscillating within the cluster potential after having been displaced by mergers or collisions, or the dark matter halo itself may not yet be relaxed.


2010 ◽  
Vol 726 (1) ◽  
pp. L6 ◽  
Author(s):  
A. J. Cuesta ◽  
T. E. Jeltema ◽  
F. Zandanel ◽  
S. Profumo ◽  
F. Prada ◽  
...  
Keyword(s):  

2020 ◽  
Vol 500 (3) ◽  
pp. 3776-3801
Author(s):  
Wenting Wang ◽  
Masahiro Takada ◽  
Xiangchong Li ◽  
Scott G Carlsten ◽  
Ting-Wen Lan ◽  
...  

ABSTRACT We conduct a comprehensive and statistical study of the luminosity functions (LFs) for satellite galaxies, by counting photometric galaxies from HSC, DECaLS, and SDSS around isolated central galaxies (ICGs) and paired galaxies from the SDSS/DR7 spectroscopic sample. Results of different surveys show very good agreement. The satellite LFs can be measured down to MV ∼ −10, and for central primary galaxies as small as 8.5 < log10M*/M⊙ < 9.2 and 9.2 < log10M*/M⊙ < 9.9, which implies there are on average 3–8 satellites with MV < −10 around LMC-mass ICGs. The bright end cutoff of satellite LFs and the satellite abundance are both sensitive to the magnitude gap between the primary and its companions, indicating galaxy systems with larger magnitude gaps are on average hosted by less massive dark matter haloes. By selecting primaries with stellar mass similar to our Milky Way (MW), we discovered that (i) the averaged satellite LFs of ICGs with different magnitude gaps to their companions and of galaxy pairs with different colour or colour combinations all show steeper slopes than the MW satellite LF; (ii) there are on average more satellites with −15 < MV < −10 than those in our MW; (iii) there are on average 1.5 to 2.5 satellites with MV < −16 around ICGs, consistent with our MW; (iv) even after accounting for the large scatter predicted by numerical simulations, the MW satellite LF is uncommon at MV > −12. Hence, the MW and its satellite system are statistically atypical of our sample of MW-mass systems. In consequence, our MW is not a good representative of other MW-mass galaxies. Strong cosmological implications based on only MW satellites await additional discoveries of fainter satellites in extra-galactic systems. Interestingly, the MW satellite LF is typical among other MW-mass systems within 40 Mpc in the local Universe, perhaps implying the Local Volume is an underdense region.


2008 ◽  
Vol 4 (S254) ◽  
pp. 179-190 ◽  
Author(s):  
Rosemary F. G. Wyse

AbstractI discuss how the chemical abundance distributions, kinematics and age distributions of stars in the thin and thick disks of the Galaxy can be used to decipher the merger history of the Milky Way, a typical large galaxy. The observational evidence points to a rather quiescent past merging history, unusual in the context of the ‘consensus’ cold-dark-matter cosmology favoured from observations of structure on scales larger than individual galaxies.


1987 ◽  
Vol 124 ◽  
pp. 335-348
Author(s):  
Neta A. Bahcall

The evidence for the existence of very large scale structures, ∼ 100h−1Mpc in size, as derived from the spatial distribution of clusters of galaxies is summarized. Detection of a ∼ 2000 kms−1 elongation in the redshift direction in the distribution of the clusters is also described. Possible causes of the effect are peculiar velocities of clusters on scales of 10–100h−1Mpc and geometrical elongation of superclusters. If the effect is entirely due to the peculiar velocities of clusters, then superclusters have masses of order 1016.5M⊙ and may contain a larger amount of dark matter than previously anticipated.


2021 ◽  
Vol 2021 (12) ◽  
pp. 003
Author(s):  
José Fonseca ◽  
Chris Clarkson

Abstract In this paper, we study how to directly measure the effect of peculiar velocities in the observed angular power spectra. We do this by constructing a new anti-symmetric estimator of Large Scale Structure using different dark matter tracers. We show that the Doppler term is the major component of our estimator and we show that we can measure it with a signal-to-noise ratio up to ∼ 50 using a futuristic SKAO HI galaxy survey. We demonstrate the utility of this estimator by using it to provide constraints on the Euler equation.


2014 ◽  
Vol 11 (S308) ◽  
pp. 530-537
Author(s):  
Nelson D. Padilla ◽  
Dante Paz ◽  
Marcelo Lares ◽  
Laura Ceccarelli ◽  
Diego Garcí a Lambas ◽  
...  

AbstractCosmic voids are becoming key players in testing the physics of our Universe. Here we concentrate on the abundances and the dynamics of voids as these are among the best candidates to provide information on cosmological parameters. Cai, Padilla & Li (2014) use the abundance of voids to tell apart Hu & Sawicki f(R) models from General Relativity. An interesting result is that even though, as expected, voids in the dark matter field are emptier in f(R) gravity due to the fifth force expelling away from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this case becomes even lower in f(R) compared to GR for large voids. Still, the differences are significant and this provides a way to tell apart these models. The velocity field differences between f(R) and GR, on the other hand, are the same for halo voids and for dark matter voids. Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessity of four parameters to describe the density profiles around voids given two distinct void populations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids, and the combination of the latter with void density profiles allows the construction of model void-galaxy cross-correlation functions with redshift space distortions. When these models are tuned to fit the measured correlation functions for voids and galaxies in the Sloan Digital Sky Survey, small voids are found to be of the void-in-cloud type, whereas larger ones are consistent with being void-in-void. This is a novel result that is obtained directly from redshift space data around voids. These profiles can be used to remove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.


1994 ◽  
Vol 431 ◽  
pp. 559 ◽  
Author(s):  
Wojciech H. Zurek ◽  
Peter J. Quinn ◽  
John K. Salmon ◽  
Michael S. Warren

2014 ◽  
Vol 11 (S308) ◽  
pp. 187-192
Author(s):  
O. Nasonova ◽  
I. Karachentsev ◽  
V. Karachentseva

AbstractBootes filament of galaxies is a dispersed chain of groups residing on sky between the Local Void and the Virgo cluster. We consider a sample of 361 galaxies inside the sky area of RA = 13h0...18h.5 and Dec = .5°... + 10° with radial velocities VLG < 2000 km/s to clarify its structure and kinematics. In this region, 161 galaxies have individual distance estimates. We use these data to draw the Hubble relation for galaxy groups, pairs as well as the field galaxies, and to examine the galaxy distribution on peculiar velocities. Our analysis exposes the known Virgo-centric infall at RA < 14h and some signs of outflow from the Local Void at RA > 17h. According to the galaxy grouping criterion, this complex contains the members of 13 groups, 11 pairs and 140 field galaxies. The most prominent group is dominated by NGC 5846. The Bootes filament contains the total stellar mass of 2.7 ×1012M⊙ and the total virial mass of 9.07×1013M⊙, having the average density of dark matter to be Ωm = 0.09, i.e. a factor three lower than the global cosmic value.


Sign in / Sign up

Export Citation Format

Share Document