scholarly journals A radio halo surrounding the Brightest Cluster Galaxy in RXCJ0232.2–4420: a mini-halo in transition?

2019 ◽  
Vol 486 (1) ◽  
pp. L80-L84 ◽  
Author(s):  
Ruta Kale ◽  
Krishna M Shende ◽  
Viral Parekh

ABSTRACT Diffuse radio sources associated with the intra-cluster medium are direct probes of the cosmic ray electrons and magnetic fields. We report the discovery of a diffuse radio source in the galaxy cluster RXCJ0232.2–4420 (SPT-CL J0232–4421, z = 0.2836) using 606 MHz observations with the Giant Metrewave Radio Telescope. The diffuse radio source surrounds the Brightest Cluster Galaxy in the cluster-like typical radio mini-haloes. However the total extent of it is 550 × 800 kpc2, which is larger than mini-haloes and similar to that of radio haloes. The BCG itself is also a radio source with a marginally resolved core at 7 arcsec (30 kpc) resolution. We measure the 606 MHz flux density of the RH to be 52 ± 5 mJy. Assuming a spectral index of 1.3, the 1.4 GHz radio power is 4.5 × 1024 W Hz−1. The dynamical state of the cluster has been inferred to be 'relaxed’ and also as 'complex’, depending on the classification methods based on the morphology of the X-ray surface brightness. This system thus seems to be in the transition phase from a mini-halo to a radio halo.

2019 ◽  
Vol 15 (S356) ◽  
pp. 280-284
Author(s):  
Angela Bongiorno ◽  
Andrea Travascio

AbstractXDCPJ0044.0-2033 is one of the most massive galaxy cluster at z ∼1.6, for which a wealth of multi-wavelength photometric and spectroscopic data have been collected during the last years. I have reported on the properties of the galaxy members in the very central region (∼ 70kpc × 70kpc) of the cluster, derived through deep HST photometry, SINFONI and KMOS IFU spectroscopy, together with Chandra X-ray, ALMA and JVLA radio data.In the core of the cluster, we have identified two groups of galaxies (Complex A and Complex B), seven of them confirmed to be cluster members, with signatures of ongoing merging. These galaxies show perturbed morphologies and, three of them show signs of AGN activity. In particular, two of them, located at the center of each complex, have been found to host luminous, obscured and highly accreting AGN (λ = 0.4−0.6) exhibiting broad Hα line. Moreover, a third optically obscured type-2 AGN, has been discovered through BPT diagram in Complex A. The AGN at the center of Complex B is detected in X-ray while the other two, and their companions, are spatially related to radio emission. The three AGN provide one of the closest AGN triple at z > 1 revealed so far with a minimum (maximum) projected distance of 10 kpc (40 kpc). The discovery of multiple AGN activity in a highly star-forming region associated to the crowded core of a galaxy cluster at z ∼ 1.6, suggests that these processes have a key role in shaping the nascent Brightest Cluster Galaxy, observed at the center of local clusters. According to our data, all galaxies in the core of XDCPJ0044.0-2033 could form a BCG of M* ∼ 1012Mȯ hosting a BH of 2 × 108−109Mȯ, in a time scale of the order of 2.5 Gyrs.


Galaxies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 108
Author(s):  
Simona Giacintucci ◽  
Tracy Clarke ◽  
Namir E. Kassim ◽  
Wendy Peters ◽  
Emil Polisensky

We present VLA Low-band Ionosphere and Transient Experiment (VLITE) 338 MHz observations of the galaxy cluster CL 0838+1948. We combine the VLITE data with Giant Metrewave Radio Telescope 610 MHz observations and survey data. The central galaxy hosts a 250 kpc source whose emission is dominated by two large lobes at low frequencies. At higher frequencies, a pair of smaller lobes (∼30 kpc) is detected within the galaxy optical envelope. The observed morphology is consistent with a restarted radio galaxy. The outer lobes have a spectral index αout=1.6, indicating that they are old, whereas the inner lobes have αinn=0.6, typical for an active source. Spectral modeling confirms that the outer emission is a dying source whose nuclear activity switched off not more than 110 Myr ago. Using archival Chandra X-ray data, we compare the radio and hot gas emission. We find that the active radio source is contained within the innermost and X-ray brightest region, possibly a galactic corona. Alternatively, it could be the remnant of a larger cool core whose outer layers have been heated by the former epoch of activity that has generated the outer lobes.


2020 ◽  
Vol 501 (1) ◽  
pp. 576-586
Author(s):  
D N Hoang ◽  
T W Shimwell ◽  
E Osinga ◽  
A Bonafede ◽  
M Brüggen ◽  
...  

ABSTRACT Radio haloes are extended (∼Mpc), steep spectrum sources found in the central region of dynamically disturbed clusters of galaxies. Only a handful of radio haloes have been reported to reside in galaxy clusters with a mass $M_{500}\lesssim 5\times 10^{14}\, \mathrm{ M}_\odot$. In this paper, we present a LOw Frequency ARray (LOFAR) 144 MHz detection of a radio halo in the galaxy cluster Abell 990 with a mass of $M_{500}=(4.9\pm 0.3)\times 10^{14}\, \mathrm{ M}_\odot$. The halo has a projected size of ${\sim} 700\, {\rm kpc}$ and a flux density of $20.2\pm 2.2\, {\rm mJy}$ or a radio power of $1.2\pm 0.1\times 10^{24}\, {\rm W\, Hz}^{-1}$ at the cluster redshift (z = 0.144) that makes it one of the two haloes with the lowest radio power detected to date. Our analysis of the emission from the cluster with Chandra archival data using dynamical indicators shows that the cluster is not undergoing a major merger but is a slightly disturbed system with a mean temperature of $5\, {\rm keV}$. The low X-ray luminosity of $L_{\mathrm{ X}}=(3.66\pm 0.08)\times 10^{44}\, {\rm erg\, s}^{-1}$ in the 0.1–2.4 keV band implies that the cluster is one of the least luminous systems known to host a radio halo. Our detection of the radio halo in Abell 990 opens the possibility of detecting many more haloes in poorly explored less massive clusters with low-frequency telescopes such as LOFAR, Murchison Widefield Array (MWA, Phase II), and upgraded Giant Metrewave Radio Telescope (uGMRT).


2020 ◽  
Vol 642 ◽  
pp. L3
Author(s):  
X. Zhang ◽  
A. Simionescu ◽  
J. S. Kaastra ◽  
H. Akamatsu ◽  
D. N. Hoang ◽  
...  

We present an analysis of archival Chandra data of the merging galaxy cluster ClG 0217+70. The Fe XXV Heα X-ray emission line is clearly visible in the 25 ks observation, allowing a precise determination of the redshift of the cluster as z = 0.180 ± 0.006. We measure kT500 = 8.3  ±  0.4 keV and estimate M500 = (1.06 ± 0.11) × 1015 M⊙ based on existing scaling relations. Correcting both the radio and X-ray luminosities with the revised redshift reported here, which is much larger than previously inferred based on sparse optical data, this object is no longer an X-ray underluminous outlier in the LX − Pradio scaling relation. The new redshift also means that, in terms of physical scale, ClG 0217+70 hosts one of the largest radio halos and one of the largest radio relics known to date. Most of the relic candidates lie in projection beyond r200. The X-ray morphological parameters suggest that the intracluster medium is still dynamically disturbed. Two X-ray surface brightness discontinuities are confirmed in the northern and southern parts of the cluster, with density jumps of 1.40 ± 0.16 and 3.0 ± 0.6, respectively. We also find a 700 × 200 kpc X-ray faint channel in the western part of the cluster, which may correspond to compressed heated gas or increased non-thermal pressure due to turbulence or magnetic fields.


2020 ◽  
Vol 642 ◽  
pp. A85 ◽  
Author(s):  
F. de Gasperin ◽  
G. Brunetti ◽  
M. Brüggen ◽  
R. van Weeren ◽  
W. L. Williams ◽  
...  

Context. Ultra-low frequency observations (< 100 MHz) are particularly challenging because they are usually performed in a low signal-to-noise ratio regime due to the high sky temperature and because of ionospheric disturbances whose effects are inversely proportional to the observing frequency. Nonetheless, these observations are crucial for studying the emission from low-energy populations of cosmic rays. Aims. We aim to obtain the first thermal-noise limited (∼1.5 mJy beam−1) deep continuum radio map using the Low Frequency Array’s Low Band Antenna (LOFAR LBA) system. Our demonstration observation targeted the galaxy cluster RX J0603.3+4214 (known as the Toothbrush cluster). We used the resulting ultra-low frequency (39–78 MHz) image to study cosmic-ray acceleration and evolution in the post shock region considering the presence of a radio halo. Methods. We describe the data reduction we used to calibrate LOFAR LBA observations. The resulting image was combined with observations at higher frequencies (LOFAR 150 MHz and VLA 1500 MHz) to extract spectral information. Results. We obtained the first thermal-noise limited image from an observation carried out with the LOFAR LBA system using all Dutch stations at a central frequency of 58 MHz. With eight hours of data, we reached an rms noise of 1.3 mJy beam−1 at a resolution of 18″ × 11″. Conclusions. The procedure we developed is an important step towards routine high-fidelity imaging with the LOFAR LBA. The analysis of the radio spectra shows that the radio relic extends to distances of 800 kpc downstream from the shock front, larger than what is allowed by electron cooling time. Furthermore, the shock wave started accelerating electrons already at a projected distance of < 300 kpc from the crossing point of the two clusters. These results may be explained by electrons being re-accelerated downstream by background turbulence, possibly combined with projection effects with respect to the radio halo.


2019 ◽  
Vol 629 ◽  
pp. A104 ◽  
Author(s):  
R. Gobat ◽  
E. Daddi ◽  
R. T. Coogan ◽  
A. M. C. Le Brun ◽  
F. Bournaud ◽  
...  

We present Atacama Large Millimetre Array and Atacama Compact Array observations of the Sunyaev-Zel’dovich effect in the z = 2 galaxy cluster Cl J1449+0856, an X-ray-detected progenitor of typical massive clusters in the present day Universe. While in a cleaned but otherwise untouched 92 GHz map of this cluster little to no negative signal is visible, careful subtraction of known sub-millimetre emitters in the uv plane reveals a decrement at 5σ significance. The total signal is −190 ± 36 μJy, with a peak offset by 5″–9″ (∼50 kpc) from both the X-ray centroid and the still-forming brightest cluster galaxy. A comparison of the recovered uv-amplitude profile of the decrement with different pressure models allows us to derive total mass constraints consistent with the ∼6 × 1013M⊙ estimated from X-ray data. Moreover, we find no strong evidence for a deviation of the pressure profile with respect to local galaxy clusters, although a slight tension at small-to-intermediate spatial scales suggests a flattened central profile, opposite to that seen in a cool core and possibly an AGN-related effect. This analysis of the lowest mass single SZ detection so far illustrates the importance of interferometers when observing the SZ effect in high-redshift clusters, the cores of which cannot be considered quiescent, such that careful subtraction of galaxy emission is necessary.


1982 ◽  
Vol 97 ◽  
pp. 45-46
Author(s):  
Jack O. Burns ◽  
Jean A. Eilek ◽  
Frazer N. Owen

It has been generally assumed that wide-angle tailed (WAT) sources like 3C465 are formed in a manner similar to that of the more strongly bent U-shaped sources such as NGC 1265, i.e., by ram pressure arising from galaxy motion through a dense intracluster medium (ICM). The WAT sources were thought to be less strongly bent because of the smaller ratio of tail plasma flow momentum flux to galaxy velocity. However, as noted recently by Burns (1981), there is a serious discrepancy between the ram pressure model requirements for bending WATs and the dynamics of the associated radio galaxy. To bend the tails, we calculate that the galaxy must typically move at velocities of 0.7–1×103 km s−1 for distances comparable to the length of the radio tails (∼200 kpc for 3C465). This implied galaxy motion is inconsistent with the nature of the massive cD galaxies generally associated with WATs. Cluster galaxy velocity data, X-ray observations, and recent models suggest that these giant galaxies are nearly at rest at the bottoms of cluster potential wells, at most moving ∼200 km s−1 in an oscillatory motion of small amplitude (<0.3 of a core radius, Malumuth, 1981, private communication). Thus it appears that some other mechanism is responsible for bending WAT sources.


2020 ◽  
Vol 493 (1) ◽  
pp. L28-L32 ◽  
Author(s):  
Ramij Raja ◽  
Majidul Rahaman ◽  
Abhirup Datta ◽  
Jack O Burns ◽  
H T Intema ◽  
...  

ABSTRACT The advent of sensitive low-frequency radio observations has revealed a number of diffuse radio objects with peculiar properties that are challenging our understanding of the physics of the intracluster medium. Here, we report the discovery of a steep-spectrum radio halo surrounding the central brightest cluster galaxy (BCG) in the galaxy cluster SPT-CL J2031−4037. This cluster is morphologically disturbed yet has a weak cool core, an example of a cool-core/non-cool-core transition system, which harbours a radio halo ∼0.7 Mpc in size. The halo emission detected at 1.7 GHz is less extended compared to that in the 325 MHz observation, and the spectral index of the part of the halo visible at the 325 MHz to 1.7 GHz frequencies was found to be −1.35 ± 0.07. Also, P1.4 GHz was found to be 0.77 × 1024 W Hz−1, which falls in the region where radio mini-haloes, halo upper limits and ultra-steep-spectrum (USS) haloes are found in the P1.4 GHz–LX plane. Additionally, simulations presented in the paper provide support for the scenario of the steep spectrum. The diffuse radio emission found in this cluster may be a steep-spectrum ‘intermediate’ or ‘hybrid’ radio halo that is transitioning into a mini-halo.


2019 ◽  
Vol 628 ◽  
pp. A83 ◽  
Author(s):  
F. Cova ◽  
F. Gastaldello ◽  
D. R. Wik ◽  
W. Boschin ◽  
A. Botteon ◽  
...  

Aims. We present the results of a joint XMM-Newton and NuSTAR observation (200 ks) of the galaxy cluster Abell 523 at z = 0.104. The peculiar morphology of the cluster radio halo and its outlier position in the radio power P(1.4 GHz) – X-ray luminosity plane make it an ideal candidate for the study of radio and X-ray correlations and for the search of inverse Compton (IC) emission. Methods. We constructed bi-dimensional maps for the main thermodynamic quantities (i.e., temperature, pressure and entropy) derived from the XMM observations to describe the physical and dynamical state of the cluster’s intracluster medium (ICM) in detail. We performed a point-to-point comparison in terms of surface brightness between the X-ray and radio emissions to quantify their morphological discrepancies. Making use of NuSTAR’s unprecedented hard X-ray focusing capability, we looked for IC emission both globally and locally after properly modeling the purely thermal component with a multi-temperature description. Results. The thermodynamic maps obtained from the XMM observation suggest the presence of a secondary merging process that could be responsible for the peculiar radio halo morphology. This hypothesis is supported by the comparison between the X-ray and radio surface brightnesses, which shows a broad intrinsic scatter and a series of outliers from the best-fit relation, corresponding to those regions that could be influenced by a secondary merger. The global NuSTAR spectrum can be explained by purely thermal gas emission, and there is no convincing evidence that an IC component is needed. The 3σ upper limit on the IC flux in the 20−80 keV band is in the [2.2−4.0] × 10−13 erg s−1 cm−2 range, implying a lower limit on the magnetic field strength in the B >  [0.23 − 0.31] μG range. Locally, we looked for IC emission in the central region of the cluster radio halo finding a 3σ upper limit on the 20−80 keV nonthermal flux of 3.17 × 10−14 erg s−1 cm−2, corresponding to a lower limit on the magnetic field strength of B ≳ 0.81 μG.


Author(s):  
S. W. Duchesne ◽  
M. Johnston-Hollitt ◽  
A. R. Offringa ◽  
G. W. Pratt ◽  
Q. Zheng ◽  
...  

Abstract We detect and characterise extended, diffuse radio emission from galaxy clusters at 168 MHz within the Epoch of Reionization 0-h field: a $45^{\circ} \times 45^{\circ}$ region of the southern sky centred on R. A. ${}= 0^{\circ}$ , decl. ${}=-27^{\circ}$ . We detect 29 sources of interest; a newly detected halo in Abell 0141; a newly detected relic in Abell 2751; 4 new halo candidates and a further 4 new relic candidates; and a new phoenix candidate in Abell 2556. Additionally, we find nine clusters with unclassifiable, diffuse steep-spectrum emission as well as a candidate double relic system associated with RXC J2351.0-1934. We present measured source properties such as their integrated flux densities, spectral indices ( $\alpha$ , where $S_\nu \propto \nu^\alpha$ ), and sizes where possible. We find several of the diffuse sources to have ultra-steep spectra including the halo in Abell 0141, if confirmed, showing $\alpha \leq -2.1 \pm 0.1$ with the present data making it one of the steepest-spectrum haloes known. Finally, we compare our sample of haloes with previously detected haloes and revisit established scaling relations of the radio halo power ( $P_{1.4}$ ) with the cluster X-ray luminosity ( $L_{\textrm{X}}$ ) and mass ( $M_{500}$ ). We find that the newly detected haloes and candidate haloes are consistent with the $P_{1.4}$ – $L_{\textrm{X}}$ and $P_{1.4}$ – $M_{500}$ relations and see an increase in scatter in the previously found relations with increasing sample size likely caused by inhomogeneous determination of $P_{1.4}$ across the full halo sample. We show that the MWA is capable of detecting haloes and relics within most of the galaxy clusters within the Planck catalogue of Sunyaev–Zel’dovich sources depending on exact halo or relic properties.


Sign in / Sign up

Export Citation Format

Share Document