scholarly journals ClG 0217+70: A massive merging galaxy cluster with a large radio halo and relics

2020 ◽  
Vol 642 ◽  
pp. L3
Author(s):  
X. Zhang ◽  
A. Simionescu ◽  
J. S. Kaastra ◽  
H. Akamatsu ◽  
D. N. Hoang ◽  
...  

We present an analysis of archival Chandra data of the merging galaxy cluster ClG 0217+70. The Fe XXV Heα X-ray emission line is clearly visible in the 25 ks observation, allowing a precise determination of the redshift of the cluster as z = 0.180 ± 0.006. We measure kT500 = 8.3  ±  0.4 keV and estimate M500 = (1.06 ± 0.11) × 1015 M⊙ based on existing scaling relations. Correcting both the radio and X-ray luminosities with the revised redshift reported here, which is much larger than previously inferred based on sparse optical data, this object is no longer an X-ray underluminous outlier in the LX − Pradio scaling relation. The new redshift also means that, in terms of physical scale, ClG 0217+70 hosts one of the largest radio halos and one of the largest radio relics known to date. Most of the relic candidates lie in projection beyond r200. The X-ray morphological parameters suggest that the intracluster medium is still dynamically disturbed. Two X-ray surface brightness discontinuities are confirmed in the northern and southern parts of the cluster, with density jumps of 1.40 ± 0.16 and 3.0 ± 0.6, respectively. We also find a 700 × 200 kpc X-ray faint channel in the western part of the cluster, which may correspond to compressed heated gas or increased non-thermal pressure due to turbulence or magnetic fields.

Author(s):  
S. W. Duchesne ◽  
M. Johnston-Hollitt ◽  
A. R. Offringa ◽  
G. W. Pratt ◽  
Q. Zheng ◽  
...  

Abstract We detect and characterise extended, diffuse radio emission from galaxy clusters at 168 MHz within the Epoch of Reionization 0-h field: a $45^{\circ} \times 45^{\circ}$ region of the southern sky centred on R. A. ${}= 0^{\circ}$ , decl. ${}=-27^{\circ}$ . We detect 29 sources of interest; a newly detected halo in Abell 0141; a newly detected relic in Abell 2751; 4 new halo candidates and a further 4 new relic candidates; and a new phoenix candidate in Abell 2556. Additionally, we find nine clusters with unclassifiable, diffuse steep-spectrum emission as well as a candidate double relic system associated with RXC J2351.0-1934. We present measured source properties such as their integrated flux densities, spectral indices ( $\alpha$ , where $S_\nu \propto \nu^\alpha$ ), and sizes where possible. We find several of the diffuse sources to have ultra-steep spectra including the halo in Abell 0141, if confirmed, showing $\alpha \leq -2.1 \pm 0.1$ with the present data making it one of the steepest-spectrum haloes known. Finally, we compare our sample of haloes with previously detected haloes and revisit established scaling relations of the radio halo power ( $P_{1.4}$ ) with the cluster X-ray luminosity ( $L_{\textrm{X}}$ ) and mass ( $M_{500}$ ). We find that the newly detected haloes and candidate haloes are consistent with the $P_{1.4}$ – $L_{\textrm{X}}$ and $P_{1.4}$ – $M_{500}$ relations and see an increase in scatter in the previously found relations with increasing sample size likely caused by inhomogeneous determination of $P_{1.4}$ across the full halo sample. We show that the MWA is capable of detecting haloes and relics within most of the galaxy clusters within the Planck catalogue of Sunyaev–Zel’dovich sources depending on exact halo or relic properties.


2019 ◽  
Vol 486 (1) ◽  
pp. L80-L84 ◽  
Author(s):  
Ruta Kale ◽  
Krishna M Shende ◽  
Viral Parekh

ABSTRACT Diffuse radio sources associated with the intra-cluster medium are direct probes of the cosmic ray electrons and magnetic fields. We report the discovery of a diffuse radio source in the galaxy cluster RXCJ0232.2–4420 (SPT-CL J0232–4421, z = 0.2836) using 606 MHz observations with the Giant Metrewave Radio Telescope. The diffuse radio source surrounds the Brightest Cluster Galaxy in the cluster-like typical radio mini-haloes. However the total extent of it is 550 × 800 kpc2, which is larger than mini-haloes and similar to that of radio haloes. The BCG itself is also a radio source with a marginally resolved core at 7 arcsec (30 kpc) resolution. We measure the 606 MHz flux density of the RH to be 52 ± 5 mJy. Assuming a spectral index of 1.3, the 1.4 GHz radio power is 4.5 × 1024 W Hz−1. The dynamical state of the cluster has been inferred to be 'relaxed’ and also as 'complex’, depending on the classification methods based on the morphology of the X-ray surface brightness. This system thus seems to be in the transition phase from a mini-halo to a radio halo.


2019 ◽  
Vol 630 ◽  
pp. A77 ◽  
Author(s):  
A. Botteon ◽  
R. Cassano ◽  
D. Eckert ◽  
G. Brunetti ◽  
D. Dallacasa ◽  
...  

Context. Diffuse radio emission associated with the intracluster medium (ICM) is observed in a number of merging galaxy clusters. It is currently believed that a fraction of the kinetic energy in mergers is channeled into nonthermal components, such as turbulence, cosmic rays, and magnetic fields, which may lead to the formation of giant synchrotron sources in the ICM. Aims. Studying merging galaxy clusters in different evolutionary phases is fundamental for understanding the origin of radio emission in the ICM. Methods. We observed the nearby galaxy cluster pair RXC J1825.3+3026 (z ∼ 0.065) and CIZA J1824.1+3029 (z ∼ 0.071) at 120 − 168 MHz with the LOw Frequency ARray (LOFAR) and made use of a deep (240 ks) XMM-Newton dataset to study the nonthermal and thermal properties of the system. RXC J1825.3+3026 is in a complex dynamical state, with a primary ongoing merger in the E-W direction and a secondary later stage merger with a group of galaxies in the SW, while CIZA J1824.1+3029 is dynamically relaxed. These two clusters are in a pre-merger phase. Results. We report the discovery of a Mpc-scale radio halo with a low surface brightness extension in RXC J1825.3+3026 that follows the X-ray emission from the cluster center to the remnant of a galaxy group in the SW. This is among the least massive systems and the faintest giant radio halo known to date. In contrast to this, no diffuse radio emission is observed in CIZA J1824.1+3029, nor in the region between the pre-merger cluster pair. The power spectra of the X-ray surface brightness fluctuations of RXC J1825.3+3026 and CIZA J1824.1+3029 are in agreement with the findings for clusters exhibiting a radio halo and clusters where no radio emission has been detected, respectively. Conclusions. We provide quantitative support to the idea that cluster mergers play a crucial role in the generation of nonthermal components in the ICM.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Alexandra Carvalho ◽  
Mariana C. F. Costa ◽  
Valeria S. Marangoni ◽  
Pei Rou Ng ◽  
Thi Le Hang Nguyen ◽  
...  

We show that the degree of oxidation of graphene oxide (GO) can be obtained by using a combination of state-of-the-art ab initio computational modeling and X-ray photoemission spectroscopy (XPS). We show that the shift of the XPS C1s peak relative to pristine graphene, ΔEC1s, can be described with high accuracy by ΔEC1s=A(cO−cl)2+E0, where c0 is the oxygen concentration, A=52.3 eV, cl=0.122, and E0=1.22 eV. Our results demonstrate a precise determination of the oxygen content of GO samples.


2006 ◽  
Vol 459 (3) ◽  
pp. 1007-1019 ◽  
Author(s):  
J. H. Croston ◽  
M. Arnaud ◽  
E. Pointecouteau ◽  
G. W. Pratt

2008 ◽  
Vol 482 (2) ◽  
pp. 451-472 ◽  
Author(s):  
Y.-Y. Zhang ◽  
A. Finoguenov ◽  
H. Böhringer ◽  
J.-P. Kneib ◽  
G. P. Smith ◽  
...  

Neurosurgery ◽  
1990 ◽  
Vol 26 (1) ◽  
pp. 102-106 ◽  
Author(s):  
Issam A. Awad ◽  
Elaine Wyllie ◽  
Hans Luders ◽  
Jennifer Ahl

Abstract There is increasing interest in staged corpus callosotomy for intractable generalized epilepsy. At the first procedure, a portion (usually the anterior two-thirds) of the corpus callosum is sectioned. If seizures persist, completion of callosotomy or alternative treatment approaches can be considered. It is obviously important to ascertain that the desired extent of callosotomy was in fact accomplished at the time of initial operation. Our experience and the published literature indicate that the surgeon's impression at operation can be erroneous. We describe a technique of determining extent of corpus callosotomy during the procedure. The magnetic resonance imaging (MRI) scan in the midsagittal plane is used to select the desired extent of callosotomy. That point on the corpus callosum is characterized using simple planar geometry in relation to three anatomic landmarks in that same plane: the glabella, the inion, and the bregma (midline intersection of the coronal suture). The same point along the corpus callosum can then be located on a lateral skull xray using these same three anatomic landmarks. At surgery, an intraoperative lateral skull x-ray is obtained with a marking clip, thereby verifying the actual extent of callosotomy. We have verified the reliability of this scheme in 5 callosotomy procedures and have used this technique for intraoperative localization of midline and parasagittal targets in another 7 cases (3 tumors, 2 aneurysms, and 2 placements of interhemispheric subdural grids). In addition, we reviewed corpus callosum topography on 25 randomly selected MRI scans. A perpendicular line bisecting the glabellainion line intersects the corpus callosum at a point near its two-thirds extent in every case. This allows a quick determination of the approximate two-thirds point along the corpus callosum by skull x-ray alone, without the need of an MRI scan. The use of the new technique and its simple modification for the two-thirds callosotomy allows a precise determination of the extent of corpus callosum section at surgery and should avoid unintended deviations from the desired procedure. (Neurosurgery 26:102-106, 1990)


Computed tomography is a method for obtaining a series of radiographic pictures of contiguous slices through a solid object such as the human body. Each picture is computed from a set of X-ray transmission measurements and represents the distribution of X-ray attenuation in the slice. The high sensitivity of the method to changes in both density and atomic number has resulted in the development of new diagnostic methods in medicine. The limitations of the method are discussed in terms of two particular kinds of application. First, those applications in which a very precise determination of density or atomic number is required, but at low spatial resolution; an example would be the determination of the uniformity of mixture of plastics or metals. The second kind of application is that requiring high spatial resolution as in the detection of cracks and the visualization of internal structures in complicated objects.


2020 ◽  
Vol 636 ◽  
pp. A15 ◽  
Author(s):  
K. Migkas ◽  
G. Schellenberger ◽  
T. H. Reiprich ◽  
F. Pacaud ◽  
M. E. Ramos-Ceja ◽  
...  

The isotropy of the late Universe and consequently of the X-ray galaxy cluster scaling relations is an assumption greatly used in astronomy. However, within the last decade, many studies have reported deviations from isotropy when using various cosmological probes; a definitive conclusion has yet to be made. New, effective and independent methods to robustly test the cosmic isotropy are of crucial importance. In this work, we use such a method. Specifically, we investigate the directional behavior of the X-ray luminosity-temperature (LX–T) relation of galaxy clusters. A tight correlation is known to exist between the luminosity and temperature of the X-ray-emitting intracluster medium of galaxy clusters. While the measured luminosity depends on the underlying cosmology through the luminosity distance DL, the temperature can be determined without any cosmological assumptions. By exploiting this property and the homogeneous sky coverage of X-ray galaxy cluster samples, one can effectively test the isotropy of cosmological parameters over the full extragalactic sky, which is perfectly mirrored in the behavior of the normalization A of the LX–T relation. To do so, we used 313 homogeneously selected X-ray galaxy clusters from the Meta-Catalogue of X-ray detected Clusters of galaxies. We thoroughly performed additional cleaning in the measured parameters and obtain core-excised temperature measurements for all of the 313 clusters. The behavior of the LX–T relation heavily depends on the direction of the sky, which is consistent with previous studies. Strong anisotropies are detected at a ≳4σ confidence level toward the Galactic coordinates (l, b) ∼ (280°, − 20°), which is roughly consistent with the results of other probes, such as Supernovae Ia. Several effects that could potentially explain these strong anisotropies were examined. Such effects are, for example, the X-ray absorption treatment, the effect of galaxy groups and low redshift clusters, core metallicities, and apparent correlations with other cluster properties, but none is able to explain the obtained results. Analyzing 105 bootstrap realizations confirms the large statistical significance of the anisotropic behavior of this sky region. Interestingly, the two cluster samples previously used in the literature for this test appear to have a similar behavior throughout the sky, while being fully independent of each other and of our sample. Combining all three samples results in 842 different galaxy clusters with luminosity and temperature measurements. Performing a joint analysis, the final anisotropy is further intensified (∼5σ), toward (l, b) ∼ (303°, − 27°), which is in very good agreement with other cosmological probes. The maximum variation of DL seems to be ∼16 ± 3% for different regions in the sky. This result demonstrates that X-ray studies that assume perfect isotropy in the properties of galaxy clusters and their scaling relations can produce strongly biased results whether the underlying reason is cosmological or related to X-rays. The identification of the exact nature of these anisotropies is therefore crucial for any statistical cluster physics or cosmology study.


Sign in / Sign up

Export Citation Format

Share Document