scholarly journals Runaway GC Evolution in Gerbil Genomes

2020 ◽  
Vol 37 (8) ◽  
pp. 2197-2210 ◽  
Author(s):  
Rodrigo Pracana ◽  
Adam D Hargreaves ◽  
John F Mulley ◽  
Peter W H Holland

Abstract Recombination increases the local GC-content in genomic regions through GC-biased gene conversion (gBGC). The recent discovery of a large genomic region with extreme GC-content in the fat sand rat Psammomys obesus provides a model to study the effects of gBGC on chromosome evolution. Here, we compare the GC-content and GC-to-AT substitution patterns across protein-coding genes of four gerbil species and two murine rodents (mouse and rat). We find that the known high-GC region is present in all the gerbils, and is characterized by high substitution rates for all mutational categories (AT-to-GC, GC-to-AT, and GC-conservative) both at synonymous and nonsynonymous sites. A higher AT-to-GC than GC-to-AT rate is consistent with the high GC-content. Additionally, we find more than 300 genes outside the known region with outlying values of AT-to-GC synonymous substitution rates in gerbils. Of these, over 30% are organized into at least 17 large clusters observable at the megabase-scale. The unusual GC-skewed substitution pattern suggests the evolution of genomic regions with very high recombination rates in the gerbil lineage, which can lead to a runaway increase in GC-content. Our results imply that rapid evolution of GC-content is possible in mammals, with gerbil species providing a powerful model to study the mechanisms of gBGC.

Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1837-1847 ◽  
Author(s):  
Laurent Duret ◽  
Marie Semon ◽  
Gwenaël Piganeau ◽  
Dominique Mouchiroud ◽  
Nicolas Galtier

AbstractTo understand the origin and evolution of isochores—the peculiar spatial distribution of GC content within mammalian genomes—we analyzed the synonymous substitution pattern in coding sequences from closely related species in different mammalian orders. In primate and cetartiodactyls, GC-rich genes are undergoing a large excess of GC → AT substitutions over AT → GC substitutions: GC-rich isochores are slowly disappearing from the genome of these two mammalian orders. In rodents, our analyses suggest both a decrease in GC content of GC-rich isochores and an increase in GC-poor isochores, but more data will be necessary to assess the significance of this pattern. These observations question the conclusions of previous works that assumed that base composition was at equilibrium. Analysis of allele frequency in human polymorphism data, however, confirmed that in the GC-rich parts of the genome, GC alleles have a higher probability of fixation than AT alleles. This fixation bias appears not strong enough to overcome the large excess of GC → AT mutations. Thus, whatever the evolutionary force (neutral or selective) at the origin of GC-rich isochores, this force is no longer effective in mammals. We propose a model based on the biased gene conversion hypothesis that accounts for the origin of GC-rich isochores in the ancestral amniote genome and for their decline in present-day mammals.


Author(s):  
Changjun Peng ◽  
Jin-Long Ren ◽  
Cao Deng ◽  
Dechun Jiang ◽  
Jichao Wang ◽  
...  

Abstract The transition of terrestrial snakes to marine life approximately 10 million years ago (Ma) is ideal for exploring adaptive evolution. Sea snakes possess phenotype specializations including laterally compressed bodies, paddle-shaped tails, valvular nostrils, cutaneous respiration, elongated lungs and salt glands yet knowledge on the genetic underpinnings of the transition remain limited. Herein, we report the first genome of Shaw’s sea snake (Hydrophis curtus) and use it to investigate sea snake secondary marine adaptation. A hybrid assembly strategy obtains a high quality genome. Gene family analyses date a pulsed coding-gene expansion to about 20 Ma, and these genes associate strongly with adaptations to marine environments. Analyses of selection pressure and convergent evolution discover the rapid evolution of protein-coding genes, and some convergent features. Additionally, 108 conserved non-coding elements appear to have evolved quickly, and these may underpin the phenotypic changes. Transposon elements may contribute to adaptive specializations by inserting into genomic regions around functionally related coding genes. The integration of genomic and transcriptomic analyses indicates independent origins and different components in sea snake and terrestrial snake venom; the venom gland of the sea snake harbours the highest PLA2 (17.23%) expression in selected elapids and these genes may organize tandemly in the genome. These analyses provide insights into the genetic mechanisms that underlay the secondary adaptation to marine and venom production of this sea snake.


Genetics ◽  
1999 ◽  
Vol 153 (1) ◽  
pp. 339-350 ◽  
Author(s):  
Francisco Rodríguez-Trelles ◽  
Rosa Tarrío ◽  
Francisco J Ayala

Abstract We investigated the nucleotide composition of five genes, Xdh, Adh, Sod, Per, and 28SrRNA, in nine species of Drosophila (subgenus Sophophora) and one of Scaptodrosophila. The six species of the Drosophila saltans group markedly differ from the others in GC content and codon use bias. The GC content in the third codon position, and to a lesser extent in the first position and the introns, is higher in the D. melanogaster and D. obscura groups than in the D. saltans group (in Scaptodrosophila it is intermediate but closer to the melanogaster and obscura species). Differences are greater for Xdh than for Adh, Sod, Per, and 28SrRNA, which are functionally more constrained. We infer that rapid evolution of GC content in the saltans lineage is largely due to a shift in mutation pressure, which may have been associated with diminished natural selection due to smaller effective population numbers rather than reduced recombination rates. The rate of GC content evolution impacts the rate of protein evolution and may distort phylogenetic inferences. Previous observations suggesting that GC content evolution is very limited in Drosophila may have been distorted due to the restricted number of genes and species (mostly D. melanogaster) investigated.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1299-1308 ◽  
Author(s):  
Joseph P Bielawski ◽  
Katherine A Dunn ◽  
Ziheng Yang

Abstract Rates and patterns of synonymous and nonsynonymous substitutions have important implications for the origin and maintenance of mammalian isochores and the effectiveness of selection at synonymous sites. Previous studies of mammalian nuclear genes largely employed approximate methods to estimate rates of nonsynonymous and synonymous substitutions. Because these methods did not account for major features of DNA sequence evolution such as transition/transversion rate bias and unequal codon usage, they might not have produced reliable results. To evaluate the impact of the estimation method, we analyzed a sample of 82 nuclear genes from the mammalian orders Artiodactyla, Primates, and Rodentia using both approximate and maximum-likelihood methods. Maximum-likelihood analysis indicated that synonymous substitution rates were positively correlated with GC content at the third codon positions, but independent of nonsynonymous substitution rates. Approximate methods, however, indicated that synonymous substitution rates were independent of GC content at the third codon positions, but were positively correlated with nonsynonymous rates. Failure to properly account for transition/transversion rate bias and unequal codon usage appears to have caused substantial biases in approximate estimates of substitution rates.


Genetics ◽  
1999 ◽  
Vol 153 (3) ◽  
pp. 1285-1296 ◽  
Author(s):  
Toshiyuki Takano-Shimizu

Abstract I studied the cause of the significant difference in the synonymous-substitution pattern found in the achaete-scute complex genes in two Drosophila lineages, higher codon bias in Drosophila yakuba, and lower bias in D. melanogaster. Besides these genes, the functionally unrelated yellow gene showed the same substitution pattern, suggesting a region-dependent phenomenon in the X-chromosome telomere. Because the numbers of A/T → G/C substitutions were not significantly different from those of G/C → A/T in the yellow noncoding regions of these species, a AT/GC mutational bias could not completely account for the synonymous-substitution biases. In contrast, we did find an ~14-fold difference in recombination rates in the X-chromosome telomere regions between the two species, suggesting that the reduction of recombination rates in this region resulted in the reduction of the efficacy of selection in D. melanogaster. In addition, the D. orena yellow showed a 5% increase in the G + C content at silent sites in the coding and noncoding regions since the divergence from D. erecta. This pattern was significantly different from those at the orena Adh and Amy loci. These results suggest that local changes in recombination rates and mutational pressures are contributing to the irregular synonymous-substitution patterns in Drosophila.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9314
Author(s):  
Girma Eshetu Teshome ◽  
Yeshitila Mekbib ◽  
Guangwan Hu ◽  
Zhi-Zhong Li ◽  
Jinming Chen

Eragrostis tef is an important cereal crop in Ethiopia with excellent storage properties, high–quality food, and the unique ability to thrive in extreme environmental conditions. However, the application of advanced molecular tools for breeding and conservation of these species is extremely limited. Therefore, developing chloroplast genome resources and high-resolution molecular markers are valuable to E. tef population and biogeographic studies. In the current study, we assembled and compared the complete plastomes of 32 E. tef accessions. The size of the plastomes ranged from 134,349 to 134,437 bp with similar GC content (∼38.3%). Genomes annotations revealed 112 individual genes, including 77 protein-coding, 31 tRNA, and 4 rRNA genes. Comparison of E. tef plastomes revealed a low degree of intraspecific sequence variations and no structural differentiations. Furthermore, we found 34 polymorphic sites (13 cpSSRs, 12 InDels, and 9 SNPs) that can be used as valuable DNA barcodes. Among them, the majority (88%) of the polymorphic sites were identified in the noncoding genomic regions. Nonsynonymous (ka) and synonymous (ks) substitution analysis showed that all PCGs were under purifying selection (ka/ks <1). The phylogenetic analyses of the whole plastomes and polymorphic region sequences were able to distinguish the accession from the southern population, indicating its potential to be used as a super-barcode. In conclusion, the newly generated plastomes and polymorphic markers developed here could be a useful genomic resource in molecular breeding, population genetics and the biogeographical study of E. tef.


Author(s):  
Kyoung Su Choi ◽  
Keum Seon Jeong ◽  
Young-Ho Ha ◽  
Kyung Choi

Genus Clematis is one of the largest within Ranunculaceae. Here we report the chloroplast genome of two Clematis species, C. brachyura and C. trichotoma endemic to Korea. The chloroplast genome lengths of C. brachyura and C. trichotoma are 159,532 bp and 159,170 bp, respectively. Gene contents in the complete chloroplast genomes of these two Clematis species are identical to that of most Ranunculaceae and other angiosperms. However, our data results demonstrated that genus Clematis has inversion and rearrangement events concerning gene rps4 gene, rps16 to trnH region, and trnL to ndhC region, and IR regions expansion. Comparison of IR regions among Ranunculaceae species revealed that Clematis species contained six protein coding genes (infA, rps8, rpl14, rpl16, rps3, and rpl22) usually found in the long single copy (LSC) region of other species. Phylogenetic analysis demonstrated that genus Clematis is closely related to genus Ranunculus. Differences in repeat structure, substitution rates, and IR expansion in genera Clematis and Ranunculus, explained their relationship. Clematis species showed slightly higher tandem repeats content than Ranunculus species. The six protein-coding genes showed lower synonymous substitution rates in the IR of Clematis species than in the LSC of Ranunculus species. Overall, the chloroplast genomes and results presented here provide important information on the evolution of Ranunculaceae.


Genetics ◽  
1998 ◽  
Vol 148 (1) ◽  
pp. 423-434
Author(s):  
Jan Dvorřák ◽  
Ming-Cheng Luo ◽  
Zu-Li Yang

Abstract RFLP was investigated at 52 single-copy gene loci among six species of Aegilops, including both cross-fertilizing and self-fertilizing species. Average gene diversity (H) was found to correlate with the level of outcrossing. No relationship was found between H and the phylogenetic status of a species. In all six species, the level of RFLP at a locus was a function of the position of the locus on the chromosome and the recombination rate in the neighborhood of the locus. Loci in the proximal chromosome regions, which show greatly reduced recombination rates relative to the distal regions, were significantly less variable than loci in the distal chromosome regions in all six species. Variation in recombination rates was also reflected in the haplotype divergence between closely related species; loci in the chromosome regions with low recombination rates were found to be diverged less than those in the chromosome regions with high recombination rates. This relationship was not found among the more distantly related species.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 652
Author(s):  
Hongwei Tan ◽  
Muhammad Naeem ◽  
Hussain Ali ◽  
Muhammad Shakeel ◽  
Haiou Kuang ◽  
...  

In Pakistan, Apis cerana, the Asian honeybee, has been used for honey production and pollination services. However, its genomic makeup and phylogenetic relationship with those in other countries are still unknown. We collected A. cerana samples from the main cerana-keeping region in Pakistan and performed whole genome sequencing. A total of 28 Gb of Illumina shotgun reads were generated, which were used to assemble the genome. The obtained genome assembly had a total length of 214 Mb, with a GC content of 32.77%. The assembly had a scaffold N50 of 2.85 Mb and a BUSCO completeness score of 99%, suggesting a remarkably complete genome sequence for A. cerana in Pakistan. A MAKER pipeline was employed to annotate the genome sequence, and a total of 11,864 protein-coding genes were identified. Of them, 6750 genes were assigned at least one GO term, and 8813 genes were annotated with at least one protein domain. Genome-scale phylogeny analysis indicated an unexpectedly close relationship between A. cerana in Pakistan and those in China, suggesting a potential human introduction of the species between the two countries. Our results will facilitate the genetic improvement and conservation of A. cerana in Pakistan.


Sign in / Sign up

Export Citation Format

Share Document