scholarly journals Correction: Mitochondrial Mutation Rate, Spectrum and Heteroplasmy inCaenorhabditis elegans Spontaneous Mutation Accumulation Lines of Differing Population Size

2017 ◽  
Vol 34 (3) ◽  
pp. 778-778
2019 ◽  
Vol 11 (7) ◽  
pp. 1829-1837 ◽  
Author(s):  
Marc Krasovec ◽  
Sophie Sanchez-Brosseau ◽  
Gwenael Piganeau

Abstract Mutations are the origin of genetic diversity, and the mutation rate is a fundamental parameter to understand all aspects of molecular evolution. The combination of mutation–accumulation experiments and high-throughput sequencing enabled the estimation of mutation rates in most model organisms, but several major eukaryotic lineages remain unexplored. Here, we report the first estimation of the spontaneous mutation rate in a model unicellular eukaryote from the Stramenopile kingdom, the diatom Phaeodactylum tricornutum (strain RCC2967). We sequenced 36 mutation accumulation lines for an average of 181 generations per line and identified 156 de novo mutations. The base substitution mutation rate per site per generation is μbs = 4.77 × 10−10 and the insertion–deletion mutation rate is μid = 1.58 × 10−11. The mutation rate varies as a function of the nucleotide context and is biased toward an excess of mutations from GC to AT, consistent with previous observations in other species. Interestingly, the mutation rates between the genomes of organelles and the nucleus differ, with a significantly higher mutation rate in the mitochondria. This confirms previous claims based on indirect estimations of the mutation rate in mitochondria of photosynthetic eukaryotes that acquired their plastid through a secondary endosymbiosis. This novel estimate enables us to infer the effective population size of P. tricornutum to be Ne∼8.72 × 106.


2016 ◽  
Author(s):  
Ann-Marie Oppold ◽  
Markus Pfenninger

AbstractMutations are the ultimate basis of evolution, yet their occurrence rate is known only for few species. We directly estimated the spontaneous mutation rate and the mutational spectrum in the non-biting midge C. riparius with a new approach. Individuals from ten mutation accumulation lines over five generations were deep genome sequenced to count de novo mutations (DNMs) that were not present in a pool of F1 individuals, representing parental genotypes. We identified 51 new single site mutations of which 25 were insertions or deletions and 26 single point mutations. This shift in the mutational spectrum compared to other organisms was explained by the high A/T content of the species. We estimated a haploid mutation rate of 2.1 x 10−9 (95% confidence interval: 1.4 x 10−9 – 3.1 x 10−9) which is in the range of recent estimates for other insects and supports the drift barrier hypothesis. We show that accurate mutation rate estimation from a high number of observed mutations is feasible with moderate effort even for non-model species.


2018 ◽  
Author(s):  
Shuqing Xu ◽  
Jessica Stapley ◽  
Saskia Gablenz ◽  
Justin Boyer ◽  
Klaus J. Appenroth ◽  
...  

AbstractMutation rate and effective population size (Ne) jointly determine intraspecific genetic diversity, but the role of mutation rate is often ignored. We investigate genetic diversity, spontaneous mutation rate andNein the giant duckweed (Spirodela polyrhiza). Despite its large census population size, whole-genome sequencing of 68 globally sampled individuals revealed extremely low within-species genetic diversity. Assessed under natural conditions, the genome-wide spontaneous mutation rate is at least seven times lower than estimates made for other multicellular eukaryotes, whereasNeis large. These results demonstrate that low genetic diversity can be associated with large-Nespecies, where selection can reduce mutation rates to very low levels, and accurate estimates of mutation rate can help to explain seemingly counterintuitive patterns of genome-wide variation.One Sentence SummaryThe low-down on a tiny plant: extremely low genetic diversity in an aquatic plant is associated with its exceptionally low mutation rate.


2019 ◽  
Author(s):  
Fabrice Besnard ◽  
Joao Picao-Osorio ◽  
Clément Dubois ◽  
Marie-Anne Félix

ABSTRACTAn evolutionary trend, the rapid evolution of a trait in a group of organisms, can in some cases be explained by the mutational variance, the propensity of a phenotype to change under spontaneous mutation. However, the causes of high mutational variance are still elusive. For some morphological traits, fast evolution was shown to depend on the high mutation rate of one or few underlying loci with short tandem repeats. Here, we investigate the case of the fastest evolving cell fate among vulva precursor cells in Caenorhabditis nematodes, that of the cell called ‘P3.p’. For this, we combine mutation accumulation lines, whole-genome sequencing, genetic linkage analysis of the phenotype in recombinant lines, and candidate testing through mutant and CRISPR genome editing to identify causal mutations and the corresponding loci underlying the high mutational variance of P3.p. We identify and validate molecular lesions responsible for changes in this cell’s phenotype during a mutation accumulation experiment. We find that these loci do not present any characteristics of a high mutation rate, are scattered across the genome and belong to distinct biological pathways. Our data instead indicate that a broad mutational target size is the cause of the high mutational variance and of the corresponding evolutionary trend.


2020 ◽  
Vol 12 (7) ◽  
pp. 1051-1059
Author(s):  
Marc Krasovec ◽  
Rosalind E M Rickaby ◽  
Dmitry A Filatov

Abstract Genetic diversity is expected to be proportional to population size, yet, there is a well-known, but unexplained lack of genetic diversity in large populations—the “Lewontin’s paradox.” Larger populations are expected to evolve lower mutation rates, which may help to explain this paradox. Here, we test this conjecture by measuring the spontaneous mutation rate in a ubiquitous unicellular marine phytoplankton species Emiliania huxleyi (Haptophyta) that has modest genetic diversity despite an astronomically large population size. Genome sequencing of E. huxleyi mutation accumulation lines revealed 455 mutations, with an unusual GC-biased mutation spectrum. This yielded an estimate of the per site mutation rate µ = 5.55×10−10 (CI 95%: 5.05×10−10 – 6.09×10−10), which corresponds to an effective population size Ne ∼ 2.7×106. Such a modest Ne is surprising for a ubiquitous and abundant species that accounts for up to 10% of global primary productivity in the oceans. Our results indicate that even exceptionally large populations do not evolve mutation rates lower than ∼10−10 per nucleotide per cell division. Consequently, the extreme disparity between modest genetic diversity and astronomically large population size in the plankton species cannot be explained by an unusually low mutation rate.


Genetics ◽  
1994 ◽  
Vol 136 (2) ◽  
pp. 685-692 ◽  
Author(s):  
Y X Fu

Abstract A new estimator of the essential parameter theta = 4Ne mu from DNA polymorphism data is developed under the neutral Wright-Fisher model without recombination and population subdivision, where Ne is the effective population size and mu is the mutation rate per locus per generation. The new estimator has a variance only slightly larger than the minimum variance of all possible unbiased estimators of the parameter and is substantially smaller than that of any existing estimator. The high efficiency of the new estimator is achieved by making full use of phylogenetic information in a sample of DNA sequences from a population. An example of estimating theta by the new method is presented using the mitochondrial sequences from an American Indian population.


Sign in / Sign up

Export Citation Format

Share Document