scholarly journals The role of ATP in the differential ability of Sr2+ to trigger Ca2+ oscillations in mouse and human eggs

Author(s):  
Anna Storey ◽  
Khalil Elgmati ◽  
Yisu Wang ◽  
Paul Knaggs ◽  
Karl Swann

Abstract At fertilization in mice and humans, the activation of the egg is caused by a series of repetitive Ca2+ oscillations which are initiated by phospholipase-C(zeta)ζ that generates inositol-1-4-5-trisphophate (InsP3). Ca2+ oscillations and egg activation can be triggered in mature mouse eggs by incubation in Sr2+ containing medium, but this does not appear to be effective in human eggs. Here we have investigated the reason for this apparent difference using mouse eggs, and human eggs that failed to fertilize after IVF or ICSI. Mouse eggs incubated in Ca2+-free, Sr2+-containing medium immediately underwent Ca2+ oscillations but human eggs consistently failed to undergo Ca2+ oscillations in the same Sr2+ medium. We tested the InsP3-receptor (IP3R) sensitivity directly by photo-release of caged InsP3 and found that mouse eggs were about 10 times more sensitive to InsP3 than human eggs. There were no major differences in the Ca2+ store content between mouse and human eggs. However, we found that the ATP concentration was consistently higher in mouse compared to human eggs. When ATP levels were lowered in mouse eggs by incubation in pyruvate-free medium, Sr2+ failed to cause Ca2+ oscillations. When pyruvate was added back to these eggs, the ATP levels increased and Ca2+ oscillations were induced. This suggests that ATP modulates the ability of Sr2+ to stimulate IP3R-induced Ca2+ release in eggs. We suggest that human eggs may be unresponsive to Sr2+ medium because they have a lower level of cytosolic ATP.

Development ◽  
2002 ◽  
Vol 129 (15) ◽  
pp. 3533-3544 ◽  
Author(s):  
Christopher M. Saunders ◽  
Mark G. Larman ◽  
John Parrington ◽  
Llewellyn J. Cox ◽  
Jillian Royse ◽  
...  

Upon fertilisation by sperm, mammalian eggs are activated by a series of intracellular Ca2+ oscillations that are essential for embryo development. The mechanism by which sperm induces this complex signalling phenomenon is unknown. One proposal is that the sperm introduces an exclusive cytosolic factor into the egg that elicits serial Ca2+ release. The ‘sperm factor’ hypothesis has not been ratified because a sperm-specific protein that generates repetitive Ca2+ transients and egg activation has not been found. We identify a novel, sperm-specific phospholipase C, PLCζ, that triggers Ca2+ oscillations in mouse eggs indistinguishable from those at fertilisation. PLCζ removal from sperm extracts abolishes Ca2+ release in eggs. Moreover, the PLCζ content of a single sperm was sufficient to produce Ca2+ oscillations as well as normal embryo development to blastocyst. Our results are consistent with sperm PLCζ as the molecular trigger for development of a fertilised egg into an embryo.


Reproduction ◽  
2001 ◽  
pp. 839-846 ◽  
Author(s):  
K Swann ◽  
J Parrington ◽  
KT Jones

An increase in intracellular Ca2+ at fertilization is the trigger for egg activation in all species that have been studied. Exactly how sperm-egg interaction leads to this Ca2+ increase has not been established. There is increasing support for the hypothesis that the spermatozoon introduces a Ca2+-releasing protein into the egg cytoplasm after gamete membrane fusion. This review discusses the merits of this 'sperm factor' hypothesis and presents evidence indicating that the sperm factor, at least in mammals, consists of a phospholipase C with distinctive properties. This evidence leads us to propose that, after gamete fusion, a sperm-derived phospholipase C causes production of inositol 1,4,5- trisphosphate, which then generates Ca2+ waves from within the egg cytoplasm.


1996 ◽  
Vol 316 (2) ◽  
pp. 583-591 ◽  
Author(s):  
Genevieve DUPONT ◽  
Orla M. McGUINNESS ◽  
Martin H. JOHNSON ◽  
Michael J. BERRIDGE ◽  
Franck BORGESE

This study involved an investigation of the role of phospholipase C (PLC) in generating repetitive Ca2+ spikes at fertilization. Using a PCR-based strategy we have demonstrated that mouse oocytes have mRNA coding for PLCβ1, PLCβ3 and PLCγ isoenzymes. Furthermore, immunodetection of PLCγ1 using monoclonal antibodies reveals that PLCγ1 protein is present in mature mouse oocytes, ruling out the possibility that mRNA was being transcribed but not expressed. We were unsuccessful at detecting the presence of PLCβ protein, but the presence of this isoform can be inferred from functional studies. The PLC inhibitor, U73122, exerted an inhibitory effect on oocytes activated by spermatozoa or acetylcholine at concentrations of 10 and 30 μM respectively, while its inactive analogue had no effect. The soluble tyrosine kinase inhibitors, genistein (100 μM), herbimycin (10 μM) and geldanamycin (0.6 μM) which could affect signalling through PLCγ hindered but never completely inhibited Ca2+ spiking in response to fertilization. We conclude that the activation of PLC to generate InsP3 may play a critical role in fertilization.


2004 ◽  
Vol 268 (2) ◽  
pp. 245-257 ◽  
Author(s):  
Ayako Yoda ◽  
Shoji Oda ◽  
Tomohide Shikano ◽  
Zen Kouchi ◽  
Takeo Awaji ◽  
...  

Reproduction ◽  
2000 ◽  
pp. 57-68 ◽  
Author(s):  
J Garde ◽  
ER Roldan

Spermatozoa undergo exocytosis in response to agonists that induce Ca2+ influx and, in turn, activation of phosphoinositidase C, phospholipase C, phospholipase A2, and cAMP formation. Since the role of cAMP downstream of Ca2+ influx is unknown, this study investigated whether cAMP modulates phospholipase C or phospholipase A2 using a ram sperm model stimulated with A23187 and Ca2+. Exposure to dibutyryl-cAMP, phosphodiesterase inhibitors or forskolin resulted in enhancement of exocytosis. However, the effect was not due to stimulation of phospholipase C or phospholipase A2: in spermatozoa prelabelled with [3H]palmitic acid or [14C]arachidonic acid, these reagents did not enhance [3H]diacylglycerol formation or [14C]arachidonic acid release. Spermatozoa were treated with the phospholipase A2 inhibitor aristolochic acid, and dibutyryl-cAMP to test whether cAMP acts downstream of phospholipase A2. Under these conditions, exocytosis did not occur in response to A23187 and Ca2+. However, inclusion of dibutyryl-cAMP and the phospholipase A2 metabolite lysophosphatidylcholine did result in exocytosis (at an extent similar to that seen when cells were treated with A23187/Ca2+ and without the inhibitor). Inclusion of lysophosphatidylcholine alone, without dibutyryl-cAMP, enhanced exocytosis to a lesser extent, demonstrating that cAMP requires a phospholipase A2 metabolite to stimulate the final stages of exocytosis. These results indicate that cAMP may act downstream of phospholipase A2, exerting a regulatory role in the exocytosis triggered by physiological agonists.


2000 ◽  
Vol 346 (3) ◽  
pp. 743-749 ◽  
Author(s):  
Keith T. JONES ◽  
Miho MATSUDA ◽  
John PARRINGTON ◽  
Matilda KATAN ◽  
Karl SWANN

A soluble phospholipase C (PLC) from boar sperm generates InsP3 and hence causes Ca2+ release when added to sea urchin egg homogenate. This PLC activity is associated with the ability of sperm extracts to cause Ca2+ oscillations in mammalian eggs following fractionation. A sperm PLC may, therefore, be responsible for causing the observed Ca2+ oscillations at fertilization. In the present study we have further characterized this boar sperm PLC activity using sea urchin egg homogenate. Consistent with a sperm PLC acting on egg PtdIns(4,5)P2, the ability of sperm extracts to release Ca2+ was blocked by preincubation with the PLC inhibitor U73122 or by the addition of neomycin to the homogenate. The Ca2+-releasing activity was also detectable in sperm from other species and in whole testis extracts. However, activity was not observed in extracts from other tissues. Moreover recombinant PLCβ1, -γ1, -γ2, -∆1, all of which had higher specific activities than boar sperm extracts, were not able to release Ca2+ in the sea urchin egg homogenate. In addition these PLCs were not able to cause Ca2+ oscillations following microinjection into mouse eggs. These results imply that the sperm PLC possesses distinct properties that allow it to hydrolyse PtdIns(4,5)P2 in eggs.


2014 ◽  
Vol 16 (suppl 2) ◽  
pp. ii30-ii30 ◽  
Author(s):  
L. Mercurio ◽  
A. Ricci ◽  
S. Cecchetti ◽  
A. Pacella ◽  
F. Podo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document