scholarly journals MeCP2 driven transcriptional repression in vitro: selectivity for methylated DNA, action at a distance and contacts with the basal transcription machinery

2000 ◽  
Vol 28 (9) ◽  
pp. 1921-1928 ◽  
Author(s):  
N. K. Kaludov ◽  
A. P. Wolffe
1992 ◽  
Vol 12 (11) ◽  
pp. 5228-5237
Author(s):  
Y Dusserre ◽  
N Mermod

The initiation of RNA polymerase II transcription is controlled by DNA sequence-specific activator proteins, in combination with cofactor polypeptides whose function is poorly understood. Transcriptional cofactors of the CTF-1 activator were purified on the basis of their affinity for the regulatory protein. These purified cofactors were found to be required for CTF-1-regulated transcription, and they counteracted squelching by an excess of activator in in vitro reconstitution experiments. Interestingly, the cofactors possessed an inhibitory activity for basal transcription, which was relieved by the further addition of the activator. Histone H1 also contributes to the regulation of transcription by CTF-1, whereby the activator prevents repression of the basal transcription machinery by the histone. However, histone H1 could not replace the cofactors for CTF-1-regulated transcription, indicating that they possess distinct transcriptional properties. Furthermore, the purified cofactors were found to be required, together with the activator, in order to antagonize the histone-mediated repression of transcription. These results suggest that CTF-1 and its cofactors function by regulating the assembly of the basal transcription machinery onto the promoter when the latter is in competition with DNA-binding inhibitory proteins such as histone H1.


1992 ◽  
Vol 12 (11) ◽  
pp. 5228-5237 ◽  
Author(s):  
Y Dusserre ◽  
N Mermod

The initiation of RNA polymerase II transcription is controlled by DNA sequence-specific activator proteins, in combination with cofactor polypeptides whose function is poorly understood. Transcriptional cofactors of the CTF-1 activator were purified on the basis of their affinity for the regulatory protein. These purified cofactors were found to be required for CTF-1-regulated transcription, and they counteracted squelching by an excess of activator in in vitro reconstitution experiments. Interestingly, the cofactors possessed an inhibitory activity for basal transcription, which was relieved by the further addition of the activator. Histone H1 also contributes to the regulation of transcription by CTF-1, whereby the activator prevents repression of the basal transcription machinery by the histone. However, histone H1 could not replace the cofactors for CTF-1-regulated transcription, indicating that they possess distinct transcriptional properties. Furthermore, the purified cofactors were found to be required, together with the activator, in order to antagonize the histone-mediated repression of transcription. These results suggest that CTF-1 and its cofactors function by regulating the assembly of the basal transcription machinery onto the promoter when the latter is in competition with DNA-binding inhibitory proteins such as histone H1.


2014 ◽  
Vol 14 (1) ◽  
pp. 18 ◽  
Author(s):  
Claudia Villicaña ◽  
Grisel Cruz ◽  
Mario Zurita

2012 ◽  
Vol 109 (26) ◽  
pp. 10450-10455 ◽  
Author(s):  
P. Chymkowitch ◽  
V. Eldholm ◽  
S. Lorenz ◽  
C. Zimmermann ◽  
J. M. Lindvall ◽  
...  

2003 ◽  
Vol 23 (12) ◽  
pp. 4162-4173 ◽  
Author(s):  
Anne Rascle ◽  
James A. Johnston ◽  
Bruno Amati

ABSTRACT The signal transducer and activator of transcription STAT5 plays a major role in the cellular response to cytokines, but the mechanism by which it activates transcription remains poorly understood. We show here that deacetylase inhibitors (trichostatin A, suberoylanilide hydroxamic acid, and sodium butyrate) prevent induction of endogenous STAT5 target genes, implying that a deacetylase activity is required for that process. Microarray analyses revealed that this requirement is common to all STAT5 target genes. Using chromatin immunoprecipitation, we show that, following STAT5 DNA binding, deacetylase inhibitors block transcription initiation by preventing recruitment of the basal transcription machinery. This inhibition is not due to effects on histone H3 and H4 acetylation or chromatin remodeling within the promoter region. This novel mechanism of transactivation by STAT5 provides a rationale for the use of deacetylase inhibitors for therapeutic intervention in STAT5-associated cancers.


2004 ◽  
Vol 279 (50) ◽  
pp. 52456-52464 ◽  
Author(s):  
Chun-Ling Jiang ◽  
Seung-Gi Jin ◽  
Gerd P. Pfeifer

Methyl-CpG-binding domain proteins 2 and 3 (MBD2 and MBD3) are transcriptional repressors that contain methyl-CpG binding domains and are components of a CpG-methylated DNA binding complex named MeCP1. Methyl-CpG-binding protein 3-like 1 (MBD3L1) is a protein with substantial homology to MBD2 and MBD3, but it lacks the methyl-CpG binding domain. MBD3L1 interacts with MBD2 and MBD3in vitroand in yeast two-hybrid assays. Gel shift experiments with a CpG-methylated DNA probe indicate that recombinant MBD3L1 can supershift an MBD2-methylated DNA complex.In vivo, MBD3L1 associates with and colocalizes with MBD2 but not with MBD3 and is recruited to 5-methylcytosine-rich pericentromeric heterochromatin in mouse cells. In glutathioneS-transferase pull-down assays MBD3L1 is found associated with several known components of the MeCP1·NuRD complex, including HDAC1, HDAC2, MTA2, MBD2, RbAp46, and RbAp48, but MBD3 is not found in the MBD3L1-bound fraction. MBD3L1 enhances transcriptional repression of methylated DNA by MBD2. The data are consistent with a role of MBD3L1 as a methylation-dependent transcriptional repressor that may interchange with MBD3 as an MBD2-interacting component of the NuRD complex. MBD3L1 knockout mice were created and were found to be viable and fertile, indicating that MBD3L1 may not be essential or there is functional redundancy (through MBD3) in this pathway. Overall, this study reveals additional complexities in the mechanisms of transcriptional repression by the MBD family proteins.


Sign in / Sign up

Export Citation Format

Share Document