Purified cofactors and histone H1 mediate transcriptional regulation by CTF/NF-I

1992 ◽  
Vol 12 (11) ◽  
pp. 5228-5237
Author(s):  
Y Dusserre ◽  
N Mermod

The initiation of RNA polymerase II transcription is controlled by DNA sequence-specific activator proteins, in combination with cofactor polypeptides whose function is poorly understood. Transcriptional cofactors of the CTF-1 activator were purified on the basis of their affinity for the regulatory protein. These purified cofactors were found to be required for CTF-1-regulated transcription, and they counteracted squelching by an excess of activator in in vitro reconstitution experiments. Interestingly, the cofactors possessed an inhibitory activity for basal transcription, which was relieved by the further addition of the activator. Histone H1 also contributes to the regulation of transcription by CTF-1, whereby the activator prevents repression of the basal transcription machinery by the histone. However, histone H1 could not replace the cofactors for CTF-1-regulated transcription, indicating that they possess distinct transcriptional properties. Furthermore, the purified cofactors were found to be required, together with the activator, in order to antagonize the histone-mediated repression of transcription. These results suggest that CTF-1 and its cofactors function by regulating the assembly of the basal transcription machinery onto the promoter when the latter is in competition with DNA-binding inhibitory proteins such as histone H1.

1992 ◽  
Vol 12 (11) ◽  
pp. 5228-5237 ◽  
Author(s):  
Y Dusserre ◽  
N Mermod

The initiation of RNA polymerase II transcription is controlled by DNA sequence-specific activator proteins, in combination with cofactor polypeptides whose function is poorly understood. Transcriptional cofactors of the CTF-1 activator were purified on the basis of their affinity for the regulatory protein. These purified cofactors were found to be required for CTF-1-regulated transcription, and they counteracted squelching by an excess of activator in in vitro reconstitution experiments. Interestingly, the cofactors possessed an inhibitory activity for basal transcription, which was relieved by the further addition of the activator. Histone H1 also contributes to the regulation of transcription by CTF-1, whereby the activator prevents repression of the basal transcription machinery by the histone. However, histone H1 could not replace the cofactors for CTF-1-regulated transcription, indicating that they possess distinct transcriptional properties. Furthermore, the purified cofactors were found to be required, together with the activator, in order to antagonize the histone-mediated repression of transcription. These results suggest that CTF-1 and its cofactors function by regulating the assembly of the basal transcription machinery onto the promoter when the latter is in competition with DNA-binding inhibitory proteins such as histone H1.


Science ◽  
1991 ◽  
Vol 254 (5029) ◽  
pp. 238-245
Author(s):  
PJ Laybourn ◽  
JT Kadonaga

The relation between chromatin structure and transcriptional activity was examined by in vitro transcription analysis of chromatin reconstituted in the absence or presence of histone H1. To maintain well-defined template DNA, purified components were used in the reconstitution of chromatin. Reconstitution of nucleosomal cores to an average density of 1 nucleosome per 200 base pairs of DNA resulted in a mild reduction of basal RNA polymerase II transcription to 25 to 50 percent of that obtained with naked DNA templates. This nucleosome-mediated repression was due to nucleosomal cores located at the RNA start site and could not be counteracted by the sequence-specific transcription activators Sp1 and GAL4-VP16. When H1 was incorporated into the chromatin at 0.5 to 1.0 molecule per nucleosome (200 base pairs of DNA), RNA synthesis was reduced to 1 to 4 percent of that observed with chromatin containing only nucleosomal cores, and this H1-mediated repression could be counteracted by the addition of Sp1 or GAL4-VP16 (antirepression). With naked DNA templates, transcription was increased by a factor of 3 and 8 by Sp1 and GAL4-VP-16, respectively (true activation). With H1-repressed chromatin templates, however, the magnitude of transcriptional activation mediated by Sp1 and GAL4-VP16 was 90 and more than 200 times higher, respectively, because of the combined effects of true activation and antirepression. The data provide direct biochemical evidence that support and clarify previously proposed models in which there is depletion or reconfiguration of nucleosomal cores and histone H1 at the promoter regions of active genes.


2004 ◽  
Vol 24 (8) ◽  
pp. 3324-3336 ◽  
Author(s):  
Masaki Endoh ◽  
Wenyan Zhu ◽  
Jun Hasegawa ◽  
Hajime Watanabe ◽  
Dong-Ki Kim ◽  
...  

ABSTRACT Recent studies have suggested that Spt6 participates in the regulation of transcription by RNA polymerase II (RNAPII). However, its underlying mechanism remains largely unknown. One possibility, which is supported by genetic and biochemical studies of Saccharomyces cerevisiae, is that Spt6 affects chromatin structure. Alternatively, Spt6 directly controls transcription by binding to the transcription machinery. In this study, we establish that human Spt6 (hSpt6) is a classic transcription elongation factor that enhances the rate of RNAPII elongation. hSpt6 is capable of stimulating transcription elongation both individually and in concert with DRB sensitivity-inducing factor (DSIF), comprising human Spt5 and human Spt4. We also provide evidence showing that hSpt6 interacts with RNAPII and DSIF in human cells. Thus, in vivo, hSpt6 may regulate multiple steps of mRNA synthesis through its interaction with histones, elongating RNAPII, and possibly other components of the transcription machinery.


2021 ◽  
Author(s):  
Helen Camakaris ◽  
Ji Yang ◽  
Tadashi Fujii ◽  
James Pittard

A novel selection was developed for RpoA α-CTD mutants altered in activation by the TyrR regulatory protein of E. coli K-12. This allowed the identification of an aspartate to asparagine substitution in residue 250 (DN250) as an Act - mutation. Amino acid residues known to be close to D250 were altered by in vitro mutagenesis, and substitutions DR250, RE310 and RD310 were all shown to be defective in activation. None of these mutations caused defects in UP regulation. The rpoA mutation DN250 was transferred onto the chromosome to facilitate the isolation of suppressor mutations. TyrR Mutations EK139 and RG119 caused partial suppression of rpoA DN250, and TyrR RC119, RL119, RP119, RA77 and SG100 caused partial suppression of rpoA RE310. Additional activation-defective rpoA mutants (DT250, RS310, EG288) were also isolated, using the chromosomal rpoA DN250 strain. Several new Act - tyrR mutants were isolated in an rpoA + strain, adding positions R77, D97, K101, D118, R119, R121 and E141 to known residues, S95 and D103, and defining the ‘activation patch’ on the NTD of TyrR. These results support a model for activation of TyrR-regulated genes where the ‘activation patch’ on the TyrR NTD interacts with the ‘TyrR-specific patch’ on the αCTD of RNA polymerase. Given known structures, both these sites appear to be surface exposed, and suggest a model for activation by TyrR. They also help resolve confusing results in the literature that implicated residues within the 261 and 265 determinants, as Activator contact sites. IMPORTANCE Regulation of transcription by RNA polymerases is fundamental for adaptation to a changing environment and for cellular differentiation, across all kingdoms of life. The gene TyrR in Escherichia coli is a particularly useful model because it is involved in both activation and repression of a large number of operons by a range of mechanisms, and it interacts with all three aromatic amino acids and probably other effectors. Furthermore TyrR has homologues in many other genera, regulating many different genes, utilizing different effector molecules, and in some cases affecting virulence, and important plant interactions.


2019 ◽  
Vol 20 (23) ◽  
pp. 5987
Author(s):  
Suthipong Chujan ◽  
Tawit Suriyo ◽  
Jutamaad Satayavivad

Cholangiocarcinoma (CCA) is a malignant tumor originating from cholangiocyte. Prolonged alcohol consumption has been suggested as a possible risk factor for CCA, but there is no information about alcohol’s mechanisms in cholangiocyte. This study was designed to investigate global transcriptional alterations through RNA-sequencing by using chronic alcohol exposure (20 mM for 2 months) in normal human cholangiocyte MMNK-1 cells. To observe the association of alcohol induced CCA pathogenesis, we combined differentially expressed genes (DEGs) with computational bioinformatics of CCA by using publicly gene expression omnibus (GEO) datasets. For biological function analysis, Gene ontology (GO) analysis showed biological process and molecular function related to regulation of transcription from RNA polymerase II promoter, while cellular component linked to the nucleoplasm. KEGG pathway presented pathways in cancer that were significantly enriched. From KEGG result, we further examined the oncogenic features resulting in chronic alcohol exposure, enhanced proliferation, and migration through CCND-1 and MMP-2 up-regulation, respectively. Finally, combined DEGs were validated in clinical data including TCGA and immunohistochemistry from HPA database, demonstrating that FOS up-regulation was related to CCA pathogenesis. This study is the first providing more information and molecular mechanisms about global transcriptome alterations and oncogenic enhancement of chronic alcohol exposure in normal cholangiocytes.


2014 ◽  
Vol 14 (1) ◽  
pp. 18 ◽  
Author(s):  
Claudia Villicaña ◽  
Grisel Cruz ◽  
Mario Zurita

Sign in / Sign up

Export Citation Format

Share Document