scholarly journals Cdc28 kinase activity regulates the basal transcription machinery at a subset of genes

2012 ◽  
Vol 109 (26) ◽  
pp. 10450-10455 ◽  
Author(s):  
P. Chymkowitch ◽  
V. Eldholm ◽  
S. Lorenz ◽  
C. Zimmermann ◽  
J. M. Lindvall ◽  
...  
2014 ◽  
Vol 14 (1) ◽  
pp. 18 ◽  
Author(s):  
Claudia Villicaña ◽  
Grisel Cruz ◽  
Mario Zurita

2003 ◽  
Vol 23 (12) ◽  
pp. 4162-4173 ◽  
Author(s):  
Anne Rascle ◽  
James A. Johnston ◽  
Bruno Amati

ABSTRACT The signal transducer and activator of transcription STAT5 plays a major role in the cellular response to cytokines, but the mechanism by which it activates transcription remains poorly understood. We show here that deacetylase inhibitors (trichostatin A, suberoylanilide hydroxamic acid, and sodium butyrate) prevent induction of endogenous STAT5 target genes, implying that a deacetylase activity is required for that process. Microarray analyses revealed that this requirement is common to all STAT5 target genes. Using chromatin immunoprecipitation, we show that, following STAT5 DNA binding, deacetylase inhibitors block transcription initiation by preventing recruitment of the basal transcription machinery. This inhibition is not due to effects on histone H3 and H4 acetylation or chromatin remodeling within the promoter region. This novel mechanism of transactivation by STAT5 provides a rationale for the use of deacetylase inhibitors for therapeutic intervention in STAT5-associated cancers.


1992 ◽  
Vol 12 (11) ◽  
pp. 5228-5237
Author(s):  
Y Dusserre ◽  
N Mermod

The initiation of RNA polymerase II transcription is controlled by DNA sequence-specific activator proteins, in combination with cofactor polypeptides whose function is poorly understood. Transcriptional cofactors of the CTF-1 activator were purified on the basis of their affinity for the regulatory protein. These purified cofactors were found to be required for CTF-1-regulated transcription, and they counteracted squelching by an excess of activator in in vitro reconstitution experiments. Interestingly, the cofactors possessed an inhibitory activity for basal transcription, which was relieved by the further addition of the activator. Histone H1 also contributes to the regulation of transcription by CTF-1, whereby the activator prevents repression of the basal transcription machinery by the histone. However, histone H1 could not replace the cofactors for CTF-1-regulated transcription, indicating that they possess distinct transcriptional properties. Furthermore, the purified cofactors were found to be required, together with the activator, in order to antagonize the histone-mediated repression of transcription. These results suggest that CTF-1 and its cofactors function by regulating the assembly of the basal transcription machinery onto the promoter when the latter is in competition with DNA-binding inhibitory proteins such as histone H1.


2020 ◽  
Vol 4 (21) ◽  
pp. 5574-5579
Author(s):  
Hélène Gazon ◽  
Pradeep Singh Chauhan ◽  
Florent Porquet ◽  
Gabriela Brunsting Hoffmann ◽  
Roberto Accolla ◽  
...  

Key Points By disrupting basal transcription machinery, HBZ RNA inhibits sense transcription of human T-cell leukemia virus type 1. Repression of genomic expression may allow entry into proviral latency and escape from immune response.


Sign in / Sign up

Export Citation Format

Share Document