scholarly journals Evidence for a partial RNA transcript of the small circular component of kinetoplast DNA of Crithidia acanthocephali

1979 ◽  
Vol 6 (12) ◽  
pp. 3785-3804 ◽  
Author(s):  
David L. Fouts ◽  
David R. Wolstenholme
Author(s):  
Douglas C. Barker

A number of satisfactory methods are available for the electron microscopy of nicleic acids. These methods concentrated on fragments of nuclear, viral and mitochondrial DNA less than 50 megadaltons, on denaturation and heteroduplex mapping (Davies et al 1971) or on the interaction between proteins and DNA (Brack and Delain 1975). Less attention has been paid to the experimental criteria necessary for spreading and visualisation by dark field electron microscopy of large intact issociations of DNA. This communication will report on those criteria in relation to the ultrastructure of the (approx. 1 x 10-14g) DNA component of the kinetoplast from Trypanosomes. An extraction method has been developed to eliminate native endonucleases and nuclear contamination and to isolate the kinetoplast DNA (KDNA) as a compact network of high molecular weight. In collaboration with Dr. Ch. Brack (Basel [nstitute of Immunology), we studied the conditions necessary to prepare this KDNA Tor dark field electron microscopy using the microdrop spreading technique.


BIO-PROTOCOL ◽  
2015 ◽  
Vol 5 (20) ◽  
Author(s):  
Etienne Delannoy ◽  
And�ol Falcon de Longevialle ◽  
Catherine Francs-Small

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Karin Holmfeldt ◽  
Emelie Nilsson ◽  
Domenico Simone ◽  
Margarita Lopez-Fernandez ◽  
Xiaofen Wu ◽  
...  

AbstractThe deep biosphere contains members from all three domains of life along with viruses. Here we investigate the deep terrestrial virosphere by sequencing community nucleic acids from three groundwaters of contrasting chemistries, origins, and ages. These viromes constitute a highly unique community compared to other environmental viromes and sequenced viral isolates. Viral host prediction suggests that many of the viruses are associated with Firmicutes and Patescibacteria, a superphylum lacking previously described active viruses. RNA transcript-based activity implies viral predation in the shallower marine water-fed groundwater, while the deeper and more oligotrophic waters appear to be in ‘metabolic standby’. Viral encoded antibiotic production and resistance systems suggest competition and antagonistic interactions. The data demonstrate a viral community with a wide range of predicted hosts that mediates nutrient recycling to support a higher microbial turnover than previously anticipated. This suggests the presence of ‘kill-the-winner’ oscillations creating slow motion ‘boom and burst’ cycles.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dongwen Rong ◽  
Qian Dong ◽  
Huajun Qu ◽  
Xinna Deng ◽  
Fei Gao ◽  
...  

AbstractIncreasing evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in human breast cancer (BC) tumorigenesis. However, the mechanisms by which lncRNA and N6-methyladenosine (m6A) regulate BC tumorigenesis are still unclear. In the present research, LINC00958 was markedly overexpressed in BC tissue and cells, and LINC00958 upregulation promoted the tumor progression of BC cells. Mechanistically, m6A methyltransferase-like 3 (METTL3) gave rise to the upregulation of LINC00958 by promoting its RNA transcript stability. Moreover, LINC00958 acted as a competitive endogenous RNA for miR-378a-3p to promote YY1. Overall, these data provide novel insight into how m6A-mediated LINC00958 regulates BC tumorigenesis.


1986 ◽  
Vol 261 (24) ◽  
pp. 11302-11309 ◽  
Author(s):  
P A Kitchin ◽  
V A Klein ◽  
K A Ryan ◽  
K L Gann ◽  
C A Rauch ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Rubem Figueiredo Sadok Menna-Barreto ◽  
Solange Lisboa de Castro

The pathogenic trypanosomatidsTrypanosoma brucei,Trypanosoma cruzi, andLeishmaniaspp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids’ life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.


Sign in / Sign up

Export Citation Format

Share Document