scholarly journals The internal region of CtIP negatively regulates DNA end resection

2020 ◽  
Vol 48 (10) ◽  
pp. 5485-5498 ◽  
Author(s):  
Sean Michael Howard ◽  
Ilaria Ceppi ◽  
Roopesh Anand ◽  
Roger Geiger ◽  
Petr Cejka

Abstract DNA double-strand breaks are repaired by end-joining or homologous recombination. A key-committing step of recombination is DNA end resection. In resection, phosphorylated CtIP first promotes the endonuclease of MRE11–RAD50–NBS1 (MRN). Subsequently, CtIP also stimulates the WRN/BLM–DNA2 pathway, coordinating thus both short and long-range resection. The structure of CtIP differs from its orthologues in yeast, as it contains a large internal unstructured region. Here, we conducted a domain analysis of CtIP to define the function of the internal region in DNA end resection. We found that residues 350–600 were entirely dispensable for resection in vitro. A mutant lacking these residues was unexpectedly more efficient than full-length CtIP in DNA end resection and homologous recombination in vivo, and consequently conferred resistance to lesions induced by the topoisomerase poison camptothecin, which require high MRN–CtIP-dependent resection activity for repair. This suggested that the internal CtIP region, further mapped to residues 550–600, may mediate a negative regulatory function to prevent over resection in vivo. The CtIP internal deletion mutant exhibited sensitivity to other DNA-damaging drugs, showing that upregulated resection may be instead toxic under different conditions. These experiments together identify a region within the central CtIP domain that negatively regulates DNA end resection.

2019 ◽  
Vol 47 (17) ◽  
pp. 9160-9179 ◽  
Author(s):  
Soon Young Hwang ◽  
Mi Ae Kang ◽  
Chul Joon Baik ◽  
Yejin Lee ◽  
Ngo Thanh Hang ◽  
...  

Abstract The pleiotropic CCCTC-binding factor (CTCF) plays a role in homologous recombination (HR) repair of DNA double-strand breaks (DSBs). However, the precise mechanistic role of CTCF in HR remains largely unclear. Here, we show that CTCF engages in DNA end resection, which is the initial, crucial step in HR, through its interactions with MRE11 and CtIP. Depletion of CTCF profoundly impairs HR and attenuates CtIP recruitment at DSBs. CTCF physically interacts with MRE11 and CtIP and promotes CtIP recruitment to sites of DNA damage. Subsequently, CTCF facilitates DNA end resection to allow HR, in conjunction with MRE11–CtIP. Notably, the zinc finger domain of CTCF binds to both MRE11 and CtIP and enables proficient CtIP recruitment, DNA end resection and HR. The N-terminus of CTCF is able to bind to only MRE11 and its C-terminus is incapable of binding to MRE11 and CtIP, thereby resulting in compromised CtIP recruitment, DSB resection and HR. Overall, this suggests an important function of CTCF in DNA end resection through the recruitment of CtIP at DSBs. Collectively, our findings identify a critical role of CTCF at the first control point in selecting the HR repair pathway.


2021 ◽  
Vol 55 (1) ◽  
pp. 285-307
Author(s):  
Petr Cejka ◽  
Lorraine S. Symington

DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5′→3′ nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Bo-Ruei Chen ◽  
Yinan Wang ◽  
Anthony Tubbs ◽  
Dali Zong ◽  
Faith C Fowler ◽  
...  

DNA double-strand break (DSB) repair by homologous recombination (HR) is thought to be restricted to the S- and G2- phases of the cell cycle in part due to 53BP1 antagonizing DNA end resection in G1-phase and non-cycling quiescent (G0) cells. Here, we show that LIN37, a component of the DREAM transcriptional repressor, functions in a 53BP1-independent manner to prevent DNA end resection and HR in G0 cells. Loss of LIN37 leads to the expression of HR proteins, including BRCA1, BRCA2, PALB2, and RAD51, and promotes DNA end resection in G0 cells even in the presence of 53BP1. In contrast to 53BP1-deficiency, DNA end resection in LIN37-deficient G0 cells depends on BRCA1 and leads to RAD51 filament formation and HR. LIN37 is not required to protect DNA ends in cycling cells at G1-phase. Thus, LIN37 regulates a novel 53BP1-independent cell phase-specific DNA end protection pathway that functions uniquely in quiescent cells.


2021 ◽  
Author(s):  
Salar Ahmad ◽  
Valerie Côté ◽  
Xue Cheng ◽  
Gaëlle Bourriquen ◽  
Vasileia Sapountzi ◽  
...  

AbstractThe NuA4 histone acetyltransferase complex, apart from its known role in gene regulation, has also been directly implicated in the repair of DNA double-strand breaks (DSBs), favoring homologous recombination (HR) in S/G2 during the cell cycle. Here, we investigate the antagonistic relationship of NuA4 with non-homologous end joining (NHEJ) factors. We show that budding yeast Rad9, the 53BP1 ortholog, can inhibit NuA4 acetyltransferase activity when bound to chromatin in vitro. While we previously reported that NuA4 is recruited at DSBs during the S/G2 phase, we can also detect its recruitment in G1 when genes for NHEJ factors Rad9, Yku80 and Nej1 are mutated. This is accompanied with the binding of single-strand DNA binding protein RPA and Rad52, indicating DNA end resection in G1 as well as recruitment of the HR machinery. This NuA4 recruitment to DSBs in G1 depends on both Xrs2 and Lcd1/Ddc2. Introducing an acetyltransferase defective allele in these NHEJ mutant backgrounds decreases their hyper-resection phenotype in G1. Interestingly, we identified two novel non-histone acetylation targets of NuA4, Nej1 and Yku80. Acetyl-mimicking mutant of Nej1 inhibits repair of DNA breaks by NHEJ, decreases its interaction with other core NHEJ factors such as Yku80 and Lif1 and favors end resection. Altogether, these results establish a strong reciprocal antagonistic regulatory function of NuA4 and NHEJ factors in repair pathway choice and suggests a role of NuA4 in alternative repair mechanism that involves DNA-end resection in G1.Author SummaryDNA double-strand breaks (DSBs) are one of the most harmful form of DNA damage. Cells employ two major repair pathways to resolve DSBs: Homologous Recombination (HR) and Non-Homologous End Joining (NHEJ). Here we wanted to dissect further the role played by the NuA4 (Nucleosome acetyltransferase of histone H4) complex in the repair of DSBs. Budding yeast NuA4 complex, like its mammalian homolog TIP60 complex, has been shown to favor repair by HR. Here, we show that indeed budding yeast NuA4 and components of the NHEJ repair pathway share an antagonistic relationship. Deletion of NHEJ components enables increased recruitment of NuA4 in the vicinity of DSBs, where NuA4 favors the end resection process which is an underlying mechanism for HR repair. We also describe two independent modes responsible for the recruitment of NuA4 to DSB sites. Additionally, we also present two NHEJ core components as new targets of NuA4 acetyltransferase activity and suggest that these acetylation events can disassemble the NHEJ repair complex from DSBs, favoring repair by HR. Our study demonstrates the importance of NuA4 in the modulation of DSB repair pathway choice.


2016 ◽  
Author(s):  
Eleni P. Mimitou ◽  
Shintaro Yamada ◽  
Scott Keeney

AbstractThe DNA double-strand breaks that initiate homologous recombination during meiosis are subject to extensive 5′→3′ exonucleolytic processing. This resection is a central and conserved feature of recombination, yet its mechanism is poorly understood. Using a purpose-made deep-sequencing method, we mapped meiotic resection endpoints genome-wide at high spatial resolution inSaccharomyces cerevisiae. Generating full-length resection tracts requires Exo1 exonuclease activity and the DNA-damage responsive kinase Tel1, but not the helicase Sgs1. Tel1 is also required for efficient and timely initiation of resection. We find that distributions of resection endpoints at individual genomic loci display pronounced heterogeneity that reflects a tendency for nucleosomes to block Exo1 in vivo, yet modeling experiments indicate that Exo1 digests chromatin with high apparent processivity and at rates approaching those for naked DNA in vitro. This paradox points to nucleosome destabilization or eviction as a determining feature of the meiotic resection landscape.


2020 ◽  
Vol 117 (43) ◽  
pp. 26795-26803 ◽  
Author(s):  
Prabha Sarangi ◽  
Connor S. Clairmont ◽  
Lucas D. Galli ◽  
Lisa A. Moreau ◽  
Alan D. D’Andrea

The repair of DNA double strand breaks (DSBs) that arise from external mutagenic agents and routine cellular processes is essential for life. DSBs are repaired by two major pathways, homologous recombination (HR) and classical nonhomologous end joining (C-NHEJ). DSB repair pathway choice is largely dictated at the step of 5′-3′ DNA end resection, which is promoted during S phase, in part by BRCA1. Opposing end resection is the 53BP1 protein, which recruits the ssDNA-binding REV7-Shieldin complex to favor C-NHEJ repair. We recently identified TRIP13 as a proresection factor that remodels REV7, causing its dissociation from the Shieldin subunit SHLD3. Here, we identify p31comet, a negative regulator of MAD2 and the spindle assembly checkpoint, as an important mediator of the TRIP13-REV7 interaction. p31comet binds to the REV7-Shieldin complex in cells, promotes REV7 inactivation, and causes PARP inhibitor resistance. p31comet also participates in the extraction of REV7 from the chromatin. Furthermore, p31comet can counteract REV7 function in translesion synthesis (TLS) by releasing it from REV3 in the Pol ζ complex. Finally, p31comet, like TRIP13, is overexpressed in many cancers and this correlates with poor prognosis. Thus, we reveal a key player in the regulation of HR and TLS with significant clinical implications.


Sign in / Sign up

Export Citation Format

Share Document