scholarly journals TFmiR: a web server for constructing and analyzing disease-specific transcription factor and miRNA co-regulatory networks

2015 ◽  
Vol 43 (W1) ◽  
pp. W283-W288 ◽  
Author(s):  
Mohamed Hamed ◽  
Christian Spaniol ◽  
Maryam Nazarieh ◽  
Volkhard Helms
2019 ◽  
Vol 36 (7) ◽  
pp. 2300-2302
Author(s):  
Maryam Nazarieh ◽  
Mohamed Hamed ◽  
Christian Spaniol ◽  
Thorsten Will ◽  
Volkhard Helms

Abstract Summary TFmiR2 is a freely available web server for constructing and analyzing integrated transcription factor (TF) and microRNA (miRNA) co-regulatory networks for human and mouse. TFmiR2 generates tissue- and biological process-specific networks for the set of deregulated genes and miRNAs provided by the user. Furthermore, the service can now identify key driver genes and miRNAs in the constructed networks by utilizing the graph theoretical concept of a minimum connected dominating set. These putative key players as well as the newly implemented four-node TF-miRNA motifs yield novel insights that may assist in developing new therapeutic approaches. Availability and implementation The TFmiR2 web server is available at http://service.bioinformatik.uni-saarland.de/tfmir2. Supplementary information Supplementary data are available at Bioinformatics online.


2012 ◽  
Vol 224 (03) ◽  
Author(s):  
I Kuznetsova ◽  
K Welte ◽  
J Skokowa

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Albert T. Young ◽  
Xavier Carette ◽  
Michaela Helmel ◽  
Hanno Steen ◽  
Robert N. Husson ◽  
...  

AbstractThe ability of Mycobacterium tuberculosis (Mtb) to adapt to diverse stresses in its host environment is crucial for pathogenesis. Two essential Mtb serine/threonine protein kinases, PknA and PknB, regulate cell growth in response to environmental stimuli, but little is known about their downstream effects. By combining RNA-Seq data, following treatment with either an inhibitor of both PknA and PknB or an inactive control, with publicly available ChIP-Seq and protein–protein interaction data for transcription factors, we show that the Mtb transcription factor (TF) regulatory network propagates the effects of kinase inhibition and leads to widespread changes in regulatory programs involved in cell wall integrity, stress response, and energy production, among others. We also observe that changes in TF regulatory activity correlate with kinase-specific phosphorylation of those TFs. In addition to characterizing the downstream regulatory effects of PknA/PknB inhibition, this demonstrates the need for regulatory network approaches that can incorporate signal-driven transcription factor modifications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sarah E. Pierce ◽  
Jeffrey M. Granja ◽  
William J. Greenleaf

AbstractChromatin accessibility profiling can identify putative regulatory regions genome wide; however, pooled single-cell methods for assessing the effects of regulatory perturbations on accessibility are limited. Here, we report a modified droplet-based single-cell ATAC-seq protocol for perturbing and evaluating dynamic single-cell epigenetic states. This method (Spear-ATAC) enables simultaneous read-out of chromatin accessibility profiles and integrated sgRNA spacer sequences from thousands of individual cells at once. Spear-ATAC profiling of 104,592 cells representing 414 sgRNA knock-down populations reveals the temporal dynamics of epigenetic responses to regulatory perturbations in cancer cells and the associations between transcription factor binding profiles.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong Wang ◽  
Aiping Duan ◽  
Jing Zhang ◽  
Qi Wang ◽  
Yuexian Xing ◽  
...  

AbstractElucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.


Sign in / Sign up

Export Citation Format

Share Document