Development of a Complication- and Treatment-Aware Prediction Model for Favorable Functional Outcome in Aneurysmal Subarachnoid Hemorrhage Based on Machine Learning

Neurosurgery ◽  
2020 ◽  
Author(s):  
Nicolai Maldaner ◽  
Anna M Zeitlberger ◽  
Marketa Sosnova ◽  
Johannes Goldberg ◽  
Christian Fung ◽  
...  

Abstract BACKGROUND Current prognostic tools in aneurysmal subarachnoid hemorrhage (aSAH) are constrained by being primarily based on patient and disease characteristics on admission. OBJECTIVE To develop and validate a complication- and treatment-aware outcome prediction tool in aSAH. METHODS This cohort study included data from an ongoing prospective nationwide multicenter registry on all aSAH patients in Switzerland (Swiss SOS [Swiss Study on aSAH]; 2009-2015). We trained supervised machine learning algorithms to predict a binary outcome at discharge (modified Rankin scale [mRS] ≤ 3: favorable; mRS 4-6: unfavorable). Clinical and radiological variables on admission (“Early” Model) as well as additional variables regarding secondary complications and disease management (“Late” Model) were used. Performance of both models was assessed by classification performance metrics on an out-of-sample test dataset. RESULTS Favorable functional outcome at discharge was observed in 1156 (62.0%) of 1866 patients. Both models scored a high accuracy of 75% to 76% on the test set. The “Late” outcome model outperformed the “Early” model with an area under the receiver operator characteristics curve (AUC) of 0.85 vs 0.79, corresponding to a specificity of 0.81 vs 0.70 and a sensitivity of 0.71 vs 0.79, respectively. CONCLUSION Both machine learning models show good discrimination and calibration confirmed on application to an internal test dataset of patients with a wide range of disease severity treated in different institutions within a nationwide registry. Our study indicates that the inclusion of variables reflecting the clinical course of the patient may lead to outcome predictions with superior predictive power compared to a model based on admission data only.

2019 ◽  
Vol 143 (8) ◽  
pp. 990-998 ◽  
Author(s):  
Min Yu ◽  
Lindsay A. L. Bazydlo ◽  
David E. Bruns ◽  
James H. Harrison

Context.— Turnaround time and productivity of clinical mass spectrometric (MS) testing are hampered by time-consuming manual review of the analytical quality of MS data before release of patient results. Objective.— To determine whether a classification model created by using standard machine learning algorithms can verify analytically acceptable MS results and thereby reduce manual review requirements. Design.— We obtained retrospective data from gas chromatography–MS analyses of 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) in 1267 urine samples. The data for each sample had been labeled previously as either analytically unacceptable or acceptable by manual review. The dataset was randomly split into training and test sets (848 and 419 samples, respectively), maintaining equal proportions of acceptable (90%) and unacceptable (10%) results in each set. We used stratified 10-fold cross-validation in assessing the abilities of 6 supervised machine learning algorithms to distinguish unacceptable from acceptable assay results in the training dataset. The classifier with the highest recall was used to build a final model, and its performance was evaluated against the test dataset. Results.— In comparison testing of the 6 classifiers, a model based on the Support Vector Machines algorithm yielded the highest recall and acceptable precision. After optimization, this model correctly identified all unacceptable results in the test dataset (100% recall) with a precision of 81%. Conclusions.— Automated data review identified all analytically unacceptable assays in the test dataset, while reducing the manual review requirement by about 87%. This automation strategy can focus manual review only on assays likely to be problematic, allowing improved throughput and turnaround time without reducing quality.


The data present in healthcare industry is very huge and delicate which requires to be managed watchfully. There are multiple fatal diseases which grow rapidly all over the world pancreatitis is one among them. Medical professionals want a reliable prediction system to diagnose Pancreatitis. Getting useful information out of the data which has been examined using diverse perspective and various machine learning methods and grouping the required information is a bit difficult task. When various data mining methods are applied on a huge and accessible data which will definitely provide us with the required information to the users. Pancreatitis contributes to Infection, Kidney failure, Breathing problem, Diabetes, Malnutrition, Pancreatic cancer. So, mining the Pancreatitis data in efficient way is a crucial concern. An outcome feature has to be predicted using a dataset where the outcome may contain only two constants that is either 1 or 0. 0 refers to the sufferer having Acute Pancreatitis and 1 refers to the sufferer may have chronic pancreatitis. Thus, an outcome feature with exemplary accuracy has to be predicted using the test dataset and classification algorithms. In order to realize this data is very necessary and then diverse classification techniques can be experimented. Then a finest model can be preferred which gives the maximum accuracy among all others.


2018 ◽  
Vol 129 (6) ◽  
pp. 1499-1510 ◽  
Author(s):  
Isabel Charlotte Hostettler ◽  
Carl Muroi ◽  
Johannes Konstantin Richter ◽  
Josef Schmid ◽  
Marian Christoph Neidert ◽  
...  

OBJECTIVEThe aim of this study was to create prediction models for outcome parameters by decision tree analysis based on clinical and laboratory data in patients with aneurysmal subarachnoid hemorrhage (aSAH).METHODSThe database consisted of clinical and laboratory parameters of 548 patients with aSAH who were admitted to the Neurocritical Care Unit, University Hospital Zurich. To examine the model performance, the cohort was randomly divided into a derivation cohort (60% [n = 329]; training data set) and a validation cohort (40% [n = 219]; test data set). The classification and regression tree prediction algorithm was applied to predict death, functional outcome, and ventriculoperitoneal (VP) shunt dependency. Chi-square automatic interaction detection was applied to predict delayed cerebral infarction on days 1, 3, and 7.RESULTSThe overall mortality was 18.4%. The accuracy of the decision tree models was good for survival on day 1 and favorable functional outcome at all time points, with a difference between the training and test data sets of < 5%. Prediction accuracy for survival on day 1 was 75.2%. The most important differentiating factor was the interleukin-6 (IL-6) level on day 1. Favorable functional outcome, defined as Glasgow Outcome Scale scores of 4 and 5, was observed in 68.6% of patients. Favorable functional outcome at all time points had a prediction accuracy of 71.1% in the training data set, with procalcitonin on day 1 being the most important differentiating factor at all time points. A total of 148 patients (27%) developed VP shunt dependency. The most important differentiating factor was hyperglycemia on admission.CONCLUSIONSThe multiple variable analysis capability of decision trees enables exploration of dependent variables in the context of multiple changing influences over the course of an illness. The decision tree currently generated increases awareness of the early systemic stress response, which is seemingly pertinent for prognostication.


2020 ◽  
Vol 14 (2) ◽  
pp. 140-159
Author(s):  
Anthony-Paul Cooper ◽  
Emmanuel Awuni Kolog ◽  
Erkki Sutinen

This article builds on previous research around the exploration of the content of church-related tweets. It does so by exploring whether the qualitative thematic coding of such tweets can, in part, be automated by the use of machine learning. It compares three supervised machine learning algorithms to understand how useful each algorithm is at a classification task, based on a dataset of human-coded church-related tweets. The study finds that one such algorithm, Naïve-Bayes, performs better than the other algorithms considered, returning Precision, Recall and F-measure values which each exceed an acceptable threshold of 70%. This has far-reaching consequences at a time where the high volume of social media data, in this case, Twitter data, means that the resource-intensity of manual coding approaches can act as a barrier to understanding how the online community interacts with, and talks about, church. The findings presented in this article offer a way forward for scholars of digital theology to better understand the content of online church discourse.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012042
Author(s):  
Ranjani Dhanapal ◽  
A AjanRaj ◽  
S Balavinayagapragathish ◽  
J Balaji

Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 642
Author(s):  
Yi-Da Wu ◽  
Ruey-Kai Sheu ◽  
Chih-Wei Chung ◽  
Yen-Ching Wu ◽  
Chiao-Chi Ou ◽  
...  

Background: Antinuclear antibody pattern recognition is vital for autoimmune disease diagnosis but labor-intensive for manual interpretation. To develop an automated pattern recognition system, we established machine learning models based on the International Consensus on Antinuclear Antibody Patterns (ICAP) at a competent level, mixed patterns recognition, and evaluated their consistency with human reading. Methods: 51,694 human epithelial cells (HEp-2) cell images with patterns assigned by experienced medical technologists collected in a medical center were used to train six machine learning algorithms and were compared by their performance. Next, we choose the best performing model to test the consistency with five experienced readers and two beginners. Results: The mean F1 score in each classification of the best performing model was 0.86 evaluated by Testing Data 1. For the inter-observer agreement test on Testing Data 2, the average agreement was 0.849 (?) among five experienced readers, 0.844 between the best performing model and experienced readers, 0.528 between experienced readers and beginners. The results indicate that the proposed model outperformed beginners and achieved an excellent agreement with experienced readers. Conclusions: This study demonstrated that the developed model could reach an excellent agreement with experienced human readers using machine learning methods.


Author(s):  
David Blondheim

AbstractMachine learning (ML) is unlocking patterns and insight into data to provide financial value and knowledge for organizations. Use of machine learning in manufacturing environments is increasing, yet sometimes these applications fail to produce meaningful results. A critical review of how defects are classified is needed to appropriately apply machine learning in a production foundry and other manufacturing processes. Four elements associated with defect classification are proposed: Binary Acceptance Specifications, Stochastic Formation of Defects, Secondary Process Variation, and Visual Defect Inspection. These four elements create data space overlap, which influences the bias associated with training supervised machine learning algorithms. If this influence is significant enough, the predicted error of the model exceeds a critical error threshold (CET). There is no financial motivation to implement the ML model in the manufacturing environment if its error is greater than the CET. The goal is to bring awareness to these four elements, define the critical error threshold, and offer guidance and future study recommendations on data collection and machine learning that will increase the success of ML within manufacturing.


Sign in / Sign up

Export Citation Format

Share Document