Resection of Navigated Transcranial Magnetic Stimulation-Positive Prerolandic Motor Areas Causes Permanent Impairment of Motor Function

Neurosurgery ◽  
2017 ◽  
Vol 81 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Tobias Moser ◽  
Lucia Bulubas ◽  
Jamil Sabih ◽  
Neal Conway ◽  
Noémie Wildschutz ◽  
...  

Abstract BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) helps to determine the distribution of motor eloquent areas prior to brain surgery. Yet, the eloquence of primary motor areas frontal to the precentral gyrus identified via nTMS is unclear. OBJECTIVE: To investigate the resection of nTMS-positive prerolandic motor areas and its correlation with postsurgical impairment of motor function. METHODS: Forty-three patients with rolandic or prerolandic gliomas (WHO grade I-IV) underwent nTMS prior to surgery. Only patients without ischemia within the motor system in postoperative MRI diffusion sequences were enrolled. Based on the 3-dimensional fusion of preoperative nTMS motor mapping data with postsurgical MRI scans, we identified nTMS points that were resected in the infiltration zone of the tumor. We then classified the resected points according to the localization and latency of their motor evoked potentials. Surgery-related paresis was graded as transient (≤6 weeks) or permanent (>6 weeks). RESULTS: Out of 43, 31 patients (72%) showed nTMS-positive motor points in the prerolandic gyri. In general, 13 out of 43 patients (30%) underwent resection of nTMS points. Ten out of these patients showed postoperative paresis. There were 2 (15%) patients with a transient and 8 (62%) with a permanent surgery-related paresis. In 3 cases (23%), motor function remained unimpaired. CONCLUSION: After resection of nTMS-positive motor points, 62% of patients suffered from a new permanent paresis. Thus, even though they are located in the superior or middle frontal gyrus, these cortical areas must undergo intraoperative mapping.

2020 ◽  
Vol 11 ◽  
pp. 29
Author(s):  
Mominul Islam ◽  
Gerald Cooray ◽  
Hamza Benmakhlouf ◽  
Mustafa Hatiboglu ◽  
Georges Sinclair

Background: The aim of the study was to demonstrate the feasibility of integrating navigated transcranial magnetic stimulation (nTMS) in preoperative gamma knife radiosurgery (GKRS) planning of motor eloquent brain tumors. Case Description: The first case was a 53-year-old female patient with metastatic breast cancer who developed focal epileptic seizures and weakness of the left hand. The magnetic resonance imaging (MRI) scan demonstrated a 30 mm metastasis neighboring the right precentral gyrus and central sulcus. The lesion was treated with adaptive hypofractionated GKRS following preoperative nTMS-based motor mapping. Subsequent follow-up imaging (up to 12 months) revealed next to complete tumor ablation without toxicity. The second case involved a previously healthy 73-year-old male who similarly developed new left-handed weakness. A subsequent MRI demonstrated a 26 mm metastatic lesion, located in the right postcentral gyrus and 5 mm from the hand motor area. The extracranial screening revealed a likely primary lung adenocarcinoma. The patient underwent preoperative nTMS motor mapping prior to treatment. Perilesional edema was noted 6 months postradiosurgery; nevertheless, long- term tumor control was demonstrated. Both patients experienced motor function normalization shortly after treatment, continuing to final follow-up. Conclusion: Integrating preoperative nTMS motor mapping in treatment planning allowed us to reduce dose distributions to perilesional motor fibers while achieving salvage of motor function, lasting seizure freedom, and tumor control. These initial data along with our review of the available literature suggest that nTMS can be of significant assistance in brain radiosurgery. Prospective studies including larger number of patients are still warranted.


2017 ◽  
Vol 128 (9) ◽  
pp. e273-e274
Author(s):  
Alexandra Poydasheva ◽  
Andrey Chernyavskiy ◽  
Ilya Bakulin ◽  
Natalia Suponeva ◽  
Michael Piradov

2021 ◽  
Author(s):  
Jaakko O. Nieminen ◽  
Heikki Sinisalo ◽  
Victor H. Souza ◽  
Mikko Malmi ◽  
Mikhail Yuryev ◽  
...  

Background: Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer. Objective: To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region. Methods: We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand. Results: The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum. Conclusion: The developed mTMS system enables electronically targeted brain stimulation within a cortical region.


2019 ◽  
Vol 10 ◽  
pp. 134 ◽  
Author(s):  
Pedro Henrique da Costa Ferreira Pinto ◽  
Flavio Nigri ◽  
Egas Moniz Caparelli-Dáquer ◽  
Jucilana dos Santos Viana

Background: Navigated transcranial magnetic stimulation (nTMS) is a well establish a noninvasive method for preoperative brain motor mapping. We commonly use magnetic resonance imaging (MRI) to supply the nTMS system. In some cases, MRI is not possible or available, and the use of computed tomography (CT) is necessary. We present the first report describing the association of CT and nTMS motor mapping for brain lesion resection. Case Description: CT imaging of a 59-year-old man suffering from acquired immune deficiency syndrome for 17 years, presenting with seizure and right hemiparesis, revealed a small single hypodense ring-enhancing lesion in the left central sulci suggesting cerebral toxoplasmosis. After 3 weeks of neurotoxoplasmosis treatment, due to four consecutive tonic-clonic seizures, a new CT scan was performed and showed no lesion changes. MRI was in maintenance at that time. Infectious diseases department suggested a brain lesion biopsy. Due to lesion’s location, we decided to perform a presurgical nTMS motor mapping. After a small craniotomy, we could precisely locate and safely totally remove the lesion. The pathology report revealed a high suspicious toxoplasmosis pattern. The patient was discharged after 2 days and continued toxoplasmosis treatment. After 6 months follow-up, he showed no signs of any procedure-related deficits or radiological recurrence. Conclusion: We report the feasibility and applicability of nTMS motor mapping using CT scan as an image source. It gives neurosurgeons another possibility to perform motor mapping for brain lesion removal, especially when MRI is not available or feasible.


Author(s):  
Severin Schramm ◽  
Aashna Mehta ◽  
Kurtis I. Auguste ◽  
Phiroz E. Tarapore

OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) is a noninvasive technique often used for localization of the functional motor cortex via induction of motor evoked potentials (MEPs) in neurosurgical patients. There has, however, been no published record of its application in pediatric epilepsy surgery. In this study, the authors aimed to investigate the feasibility of nTMS-based motor mapping in the preoperative diagnostic workup within a population of children with medically refractory epilepsy. METHODS A single-institution database was screened for preoperative nTMS motor mappings obtained in pediatric patients (aged 0 to 18 years, 2012 to present) with medically refractory epilepsy. Patient clinical data, demographic information, and mapping results were extracted and used in statistical analyses. RESULTS Sixteen patients met the inclusion criteria, 15 of whom underwent resection. The median age was 9 years (range 0–17 years). No adverse effects were recorded during mapping. Specifically, no epileptic seizures were provoked via nTMS. Recordings of valid MEPs induced by nTMS were obtained in 10 patients. In the remaining patients, no MEPs could be elicited. Failure to generate MEPs was associated significantly with younger patient age (r = 0.8020, p = 0.0001863). The most frequent seizure control outcome was Engel Epilepsy Surgery Outcome Scale class I (9 patients). CONCLUSIONS Navigated TMS is a feasible, effective, and well-tolerated method for mapping the motor cortex of the upper and lower extremities in pediatric patients with epilepsy. Patient age modulates elicitability of MEPs, potentially reflecting various stages of myelination. Successful motor mapping has the potential to add to the existing presurgical diagnostic workup in this population, and further research is warranted.


2018 ◽  
Vol 32 (1) ◽  
pp. 16-24
Author(s):  
G. Petrescu ◽  
Cristina Gorgan ◽  
A. Giovani ◽  
F.M. Brehar ◽  
R.M. Gorgan

Abstract Introduction: Maximal surgical resection with the preservation of cortical functions is the treatment of choice for brain tumors. Achieving these objectives is especially difficult when the tumor is located in an eloquent area. Navigated transcranial magnetic stimulation (nTMS) is a modern non-invasive, preoperative method for defining motor and speech eloquent areas. Material and methods: Patients with tumors located in motor and speech eloquent areas who presented at our institution between March 2017 and December 2017 were prospectively included. Exclusion criteria were frequent generalized epileptic seizures and cranial implants. For lesions involving motor eloquent areas we performed a nTMS motor mapping and for lesions involving speech eloquent areas we supplemented the motor mapping with speech and language mapping. MR images were exported from the nTMS system in a DICOM format and then loaded in the intraoperative neuronavigation system. Based on these findings, the optimal entry point and trajectory were determined, in order to achieve a maximum surgical resection of the lesion, while avoiding new post-operative neurological deficits. Results: Nineteen patients underwent an nTMS brain mapping procedure between March 2017 and December 2017. In all cases a motor mapping procedure was done, but only in eight cases a speech mapping was also performed. Three patients presented new minor postoperatory deficits that consecutively remitted. The rest of the patients presented no added neurological deficits after surgery. In five cases the preexistent deficit was ameliorated after surgery and in three cases the deficit remitted. In one patient there was no improvement in the neurologic deficit after surgery. Conclusion: nTMS is a reliable tool for the preoperative planning of eloquent area lesions. It must be taken into account that functional areas have a high individual variability. Therefore, knowing preoperatively the extent of the eloquent area helps the neurosurgeon adapt the surgical approach in order to obtain a better functional outcome.


Sign in / Sign up

Export Citation Format

Share Document